首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 10 miles separate the Horn of Africa from the Arabian Peninsula at Bab-el-Mandeb (the Gate of Tears). Both historic and archaeological evidence indicate tight cultural connections, over millennia, between these two regions. High-resolution phylogenetic analysis of 270 Ethiopian and 115 Yemeni mitochondrial DNAs was performed in a worldwide context, to explore gene flow across the Red and Arabian Seas. Nine distinct subclades, including three newly defined ones, were found to characterize entirely the variation of Ethiopian and Yemeni L3 lineages. Both Ethiopians and Yemenis contain an almost-equal proportion of Eurasian-specific M and N and African-specific lineages and therefore cluster together in a multidimensional scaling plot between Near Eastern and sub-Saharan African populations. Phylogeographic identification of potential founder haplotypes revealed that approximately one-half of haplogroup L0–L5 lineages in Yemenis have close or matching counterparts in southeastern Africans, compared with a minor share in Ethiopians. Newly defined clade L6, the most frequent haplogroup in Yemenis, showed no close matches among 3,000 African samples. These results highlight the complexity of Ethiopian and Yemeni genetic heritage and are consistent with the introduction of maternal lineages into the South Arabian gene pool from different source populations of East Africa. A high proportion of Ethiopian lineages, significantly more abundant in the northeast of that country, trace their western Eurasian origin in haplogroup N through assorted gene flow at different times and involving different source populations.  相似文献   

2.
We have analyzed and compared mitochondrial DNA variation of populations from the Near East and Africa and found a very high frequency of African lineages present in the Yemen Hadramawt: more than a third were of clear sub-Saharan origin. Other Arab populations carried approximately 10% lineages of sub-Saharan origin, whereas non-Arab Near Eastern populations, by contrast, carried few or no such lineages, suggesting that gene flow has been preferentially into Arab populations. Several lines of evidence suggest that most of this gene flow probably occurred within the past approximately 2,500 years. In contrast, there is little evidence for male-mediated gene flow from sub-Saharan Africa in Y-chromosome haplotypes in Arab populations, including the Hadramawt. Taken together, these results are consistent with substantial migration from eastern Africa into Arabia, at least in part as a result of the Arab slave trade, and mainly female assimilation into the Arabian population as a result of miscegenation and manumission.  相似文献   

3.
Mitochondrial DNA (mtDNA) variability was studied in a sample of 179 individuals representing the Czech population of Western Bohemia. Sequencing of two hypervariable segments, HVS I and HVS II, in combination with screening of coding-region haplogroup-specific RFLP markers revealed that most Czech mtDNAs belong to the common West Eurasian mitochondrial haplogroups (H, pre-V HV*, J, T, U, N1, W, and X). However, about 3% of Czech mtDNAs encompass East Eurasian lineages (A, N9a, D4, M*). A comparative analysis with published data showed that different Slavonic populations in Central and Eastern Europe contain small but marked amounts of East Eurasian mtDNAs. We suggest that the presence of East Eurasian mtDNA haplotypes is not an original feature of the gene pool of the proto-Slavs but rather may be mostly a consequence of admixture with Central Asian nomadic tribes, who migrated into Central and Eastern Europe in the early Middle Ages.  相似文献   

4.

Background  

Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample.  相似文献   

5.
The mtDNA composition of two Muslim sects from the northern Indian province of Uttar Pradesh, the Sunni and Shia, have been delineated using sequence information from hypervariable regions 1 and 2 (HVI and HVII, respectively) as well as coding region polymorphisms. A comparison of this data to that from Middle Eastern, Central Asian, North East African, and other Indian groups reveals that, at the mtDNA haplogroup level, both of these Indo-Sunni and Indo-Shia populations are more similar to each other and other Indian groups than to those from the other regions. In addition, these two Muslim sects exhibit a conspicuous absence of West Asian mtDNA haplogroups suggesting that their maternal lineages are of Indian origin. Furthermore, it is noteworthy that the maternal lineage data indicates differences between the Sunni and Shia collections of Uttar Pradesh with respect to the relative distributions of Indian-specific M sub-haplogroups (Indo Shia > Indo Sunni) and the R haplogroup (Indo Sunni > Indo Shia), a disparity that does not appear to be related to social status or geographic regions within India. Finally, the mtDNA data integrated with the Y-chromosome results from an earlier study, which indicated a major Indian genetic (Y-chromosomal) contribution as well, suggests a scenario of Hindu to Islamic conversion in these two populations. However, given the substantial level of the African/Middle Eastern YAP lineage in the Indo-Shia versus its absence in the Indo-Sunni, it is likely that this conversion was somewhat gender biased in favor of females in the Indo-Shia.  相似文献   

6.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

7.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

8.
Archaeological studies have revealed cultural connections between the two sides of the Red Sea dating to prehistory. The issue has still not been properly addressed, however, by archaeogenetics. We focus our attention here on the mitochondrial haplogroup HV1 that is present in both the Arabian Peninsula and East Africa. The internal variation of 38 complete mitochondrial DNA sequences (20 of them presented here for the first time) affiliated into this haplogroup testify to its emergence during the late glacial maximum, most probably in the Near East, with subsequent dispersion via population expansions when climatic conditions improved. Detailed phylogeography of HV1 sequences shows that more recent demographic upheavals likely contributed to their spread from West Arabia to East Africa, a finding concordant with archaeological records suggesting intensive maritime trade in the Red Sea from the sixth millennium BC onwards. Closer genetic exchanges are apparent between the Horn of Africa and Yemen, while Egyptian HV1 haplotypes seem to be more similar to the Near Eastern ones.  相似文献   

9.
Increasing phylogenetic resolution of the Y chromosome haplogroup tree has led to finer temporal and spatial resolution for studies of human migration. Haplogroup T, initially known as K2 and defined by mutation M70, is found at variable frequencies across West Asia, Africa, and Europe. While several SNPs were recently discovered that extended the length of the branch leading to haplogroup T, only two SNPs are known to mark internal branches of haplogroup T. This low level of phylogenetic resolution has hindered studies of the origin and dispersal of this interesting haplogroup, which is found in Near Eastern non-Jewish populations, Jewish populations from several communities, and in the patrilineage of President Thomas Jefferson. Here we map 10 new SNPs that, together with the previously known SNPs, mark 11 lineages and two large subclades (T1a and T1b) of haplogroup T. We also report a new SNP that links haplogroups T and L within the major framework of Y chromosome evolution. Estimates of the timing of the branching events within haplogroup T, along with a comprehensive geographic survey of the major T subclades, suggest that this haplogroup began to diversify in the Near East -25 kya. Our survey also points to a complex history of dispersal of this rare and informative haplogroup within the Near East and from the Near East to Europe and sub-Saharan Africa. The presence of T1a2 chromosomes in Near Eastern Jewish and non-Jewish populations may reflect early exiles between the ancient lands of Israel and Babylon. The presence of different subclades of T chromosomes in Europe may be explained by both the spread of Neolithic farmers and the later dispersal of Jews from the Near East. Finally, the moderately high frequency (-18%) of T1b* chromosomes in the Lemba of southern Africa supports the hypothesis of a Near Eastern, but not necessarily a Jewish, origin for their paternal line.  相似文献   

10.
The Balearic archipelago (Majorca, Minorca, and Ibiza islands and the Chuetas, a small and inbred community of descendants of Sephardic Jews) and Valencia were studied by means of the sequencing of a 404-bp segment of hypervariable region I (HVRI) mtDNA in 231 individuals. In total, 127 different haplotypes defined by 92 variable positions were identified. The incidence of unique haplotypes was very low, especially in Ibiza and the Chuetas. A remarkable observation in the Chueta community was the high frequency (23%) of preHV-1, a Middle Eastern lineage that is closely related, though not identical, to many others found at high frequencies in different Jewish populations. The presence of this haplogroup convincingly supported the Jewish origin of the Chueta community. The studied populations showed a reduced African contribution, and no individuals were detected with North African haplogroup U6, indicating a lack of maternal contribution from the Moslem settlement to these populations. Only Ibiza showed a lower diversity, indicating a possible genetic drift effect, also supported by the historical information known about this island. The variability in the sequence of mtDNA hypervariable region I correlated well with the existing information from the populations, with the exception of that of the Y-chromosome, which could indicate a differential contribution of the maternal and paternal lineages to the genetic pool of the Balearic Islands. The phylogenetic trees showed the intermediate position of the Chueta population between the Middle Eastern and Majorcan samples, confirming the Jewish origin of this population and their Spanish admixture.  相似文献   

11.
The analysis of mtDNA polymorphism was carried out in the population of Siberian Tatars from the Barabinsk forest steppe living on the territory of Novosibirsk oblast (N = 199). As a result of the analysis of HVS I and HVS II nucleotide sequence, 101 haplotypes that refer to 22 mtDNA haplogroups were detected. The population of Baraba Tatars is represented by both East Eurasian (38.7%) and West Eurasian mtDNA lines (61.3%). H, T, U5, and J haplogroups prevail among West Eurasian haplogroups; C, D, G, M, and A haplogroups prevail among East Eurasian ones. According to the index of genetic diversity, Tatars from the Barabinsk forest steppe (0.9141) are the closest to Kazakhs (0.9108), Bashkirs (0.9165), and Tobol-Irtysh Tatars (0.9104). The greatest statistically significant interpopulation differences (FST) were detected between all studied samples; the smallest interpopulation differences were detected between all Tatar samples, as well as between Tatars and Komi, Mansi, Udmurts, Kazakhs, Chuvashes, and Bashkirs. The haplogroup H is the most common in populations that we studied. In the present study, was registered the haplotype 16126–16294 with the frequency of 4% (T cluster) previously found only in Caucasians. High frequency of haplogroups U4, U5, and H in the gene pool of Baraba Tatars brings them together not only with Samoyeds but also with Finno-Ugric populations. The highest intrapopulation genetic diversity was detected in Tatars from the Barabinsk forest steppe, Tobol-Irtysh Tatars, Kazakhs, and Bashkirs. The presence of the haplogroup B in the mitochondrial DNA genetic pool of Siberian Tatars brings them together with Turks that came from regions of Altai and Central Kazakhstan and inhabited the Western Siberian forest steppe in the 6th–9th centuries. The haplogroup U7, which is typical of populations of Jordan, Kuwait, Iran, and Saudi Arabia, could also have entered the territory of residence of Siberian Tatars in the middle of second millennium BC, when Iranian-speaking tribes entered Siberia.  相似文献   

12.
An analysis of mtDNA polymorphism in eight populations of aboriginal residents (N = 519) of the Far East has been performed. The majority of haplogroups revealed in the examined groups were of East Eurasian origin. Haplogroup D was revealed in seven populations and its frequency varied from 2.8% in Koryaks to 28.3% and 28.9% in Nanaians and Evenks, respectively. Chukchi and Koryak populations, which belong to the same language family, exhibited haplogroup G, which has the same motive and indicates the genetic kinship of both populations. The presence of East Eurasian haplogroups A and D with a strong predominance of haplogroup A in Chukchi indicates the closer relationship of this population both with Asian and Canadian Eskimos and northern Atapasks on the other side of Bering Strait. The high level of genetic variability was revealed in populations belonging to the Tungus-Manjur group. The high frequency of east Eurasian haplogroups in Nanaians could result from close historical associations with Siberian Evenks.  相似文献   

13.
The genus Asellia was recently revised, giving an insight into the genetic and morphological characteristics of a group whose distribution spans from North Africa into Asia. We studied the genus further by considering additional mitochondrial markers and sampling localities. The deepest previously identified split in A. tridens is supported (Middle East/North Africa), along with the association of North and West African lineages. Central Saudi Arabia is found to represent the easternmost extent of a North African haplogroup when considering concatenated fragments of Cytochrome-b, NADH Dehydrogenase 2, and Cytochrome Oxidase 1 genes. New distribution data further emphasises the diversity found in the Middle East and suggests some mixing of haplotypes over long distances.  相似文献   

14.
North African populations are considered genetically closer to Eurasians than to sub-Saharans. However, they display a considerably high mtDNA heterogeneity among them, namely in the frequencies of the U6, East African, and sub-Saharan haplogroups. In this study, we describe and compare the female gene pools of two neighboring Tunisian populations, Kesra (Berber) and Zriba (non-Berber), which have contrasting historical backgrounds. Both populations presented lower diversity values than those observed for other North African populations, and they were the only populations not showing significant negative Fu's F(S) values. Kesra displayed a much higher proportion of typical sub-Saharan haplotypes (49%, including 4.2% of M1 haplogroup) than Zriba (8%). With respect to U6 sequences, frequencies were low (2% in Kesra and 8% in Zriba), and all belonged to the subhaplogroup U6a. An analysis of these data in the context of North Africa reveals that the emerging picture is complex, because Zriba would match the profile of a Berber Moroccan population, whereas Kesra, which shows twice the frequency of sub-Saharan lineages normally observed in northern coastal populations, would match a western Saharan population except for the low U6 frequency. The North African patchy mtDNA landscape has no parallel in other regions of the world and increasing the number of sampled populations has not been accompanied by any substantial increase in our understanding of its phylogeography. Available data up to now rely on sampling small, scattered populations, although they are carefully characterized in terms of their ethnic, linguistic, and historical backgrounds. It is therefore doubtful that this picture truly represents the complex historical demography of the region rather than being just the result of the type of samplings performed so far.  相似文献   

15.
Analysis of markers mtDNA in a population of Nogays (n = 206), living on Nothern Caucasus and speaking on language of Turkic branch of the Altaic linguistic family, has shown, that the level of their genetic differentiation is high (H = 0.99). Among the found haplotypes there is all the basic Western Eurasian haplogroups, most often of which are clusters H (22%) and U (21%), however, the percentage of the lineages specific only for populations of East Eurasia (40%) is highest. In a population of Nogays there are also variants mtDNA, belonging to haplogroup M1, characteristic for North East Africa, and gaplogroup U2, typical for populations of India. This testifies about presence in a gene pool of Nogays people of components of a various parentage.  相似文献   

16.
Polymorphism of mtDNA was examined in five ethnic populations that belong to the Turkic language group and inhabit the territory of the Altai-Sayan upland (N = 1007). Most of the haplogroups identified in the examined populations belonged to East Eurasian lineages. In all five populations, only three haplogroups, C, D, and F, were prevailing. The frequencies of the other six haplogroups (A, B, G, M, Y, and Z) varied in the range from 1.1 to 6.5%. Among West Eurasian haplogrous, the most common were haplogroups H, J, T, and U. An analysis of Y-chromosome haplogroups in 407 individuals showed that only two haplogroups, N* and R1a1, were present in all five populations examined. Moreover, in different ethnic groups, the highest frequencies were observed for C-M130, N-P43, and N-Tat haplogroups. The differences in the distribution patterns of ancient West Eurasian and East Eurasian haplotypes from Gorny Altai in the present-day populations from the northern part of Eurasia revealed can be explained in terms of the multistage expansion of humans across these territories. The ubiquity of haplotypes from haplogroup H and cluster U across the wide territory from the Yenisei River basin to the Atlantic Ocean can indicate directional human expansion, which most likely occurred out of Central Asia as early as in the Paleolithic era, and took place in several waves with the glacier retreat.  相似文献   

17.
The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult. We generated 225 whole-genome sequences (225 at 8× depth, of which 8 were increased to 30×; Illumina HiSeq 2000) from six modern Northeast African populations (100 Egyptians and five Ethiopian populations each represented by 25 individuals). West Eurasian components were masked out, and the remaining African haplotypes were compared with a panel of sub-Saharan African and non-African genomes. We showed that masked Northeast African haplotypes overall were more similar to non-African haplotypes and more frequently present outside Africa than were any sets of haplotypes derived from a West African population. Furthermore, the masked Egyptian haplotypes showed these properties more markedly than the masked Ethiopian haplotypes, pointing to Egypt as the more likely gateway in the exodus to the rest of the world. Using five Ethiopian and three Egyptian high-coverage masked genomes and the multiple sequentially Markovian coalescent (MSMC) approach, we estimated the genetic split times of Egyptians and Ethiopians from non-African populations at 55,000 and 65,000 years ago, respectively, whereas that of West Africans was estimated to be 75,000 years ago. Both the haplotype and MSMC analyses thus suggest a predominant northern route out of Africa via Egypt.  相似文献   

18.
African-derived mitochondrial DNA (mtDNA) have been described in South American and Caribbean native cattle populations, which could have been introduced into America from Iberia or by direct importation from Africa. However, the similarity among described haplotypes is not known. We examined mtDNA variation in Guadeloupe Creole and Spanish cattle in an attempt to identify African-derived mtDNA haplotypes and compare them with those previously described. Eleven haplotypes clustered into the European taurine haplogroup (T3), two haplotypes into the African taurine (T1) haplogroup, and three haplotypes into the African-derived American haplogroup (AA). The AA1 and Eucons haplotypes were the most frequently observed. The presence of the AA haplogroup in Spanish cattle confirms historical records and genetic evidence of Iberian cattle as the main source of American native cattle origin. The possible origin of African-derived mitochondrial haplotypes in Iberian and Creole cattle is discussed, and the accumulated evidence does not support a founder effect from African ancestral cattle by direct importations. The presence of taurine AA and T3 haplotypes in Brazilian Nellore may indicate introgression by local European-derived cattle. Data presented in this work will contribute to the understanding of the origin of Guadeloupe Creole cattle.  相似文献   

19.
Aim In recent decades there has been a marked decline in the numbers of African lions (Panthera leo), especially in West Africa where the species is regionally endangered. Based on the climatological history of western Africa, we hypothesize that West and Central African lions have a unique evolutionary history, which is reflected by their genetic makeup. Location Sub‐Saharan Africa and India, with special focus on West and Central Africa. Method In this study 126 samples, throughout the lion’s complete geographic range, were subjected to phylogenetic analyses. DNA sequences of a mitochondrial region, containing cytochrome b, tRNAPro, tRNAThr and the left part of the control region, were analysed. Results Bayesian, maximum likelihood and maximum parsimony analyses consistently showed a distinction between lions from West and Central Africa and lions from southern and East Africa. West and Central African lions are more closely related to Asiatic lions than to the southern and East African lions. This can be explained by a Pleistocene extinction and subsequent recolonization of West Africa from refugia in the Middle East. This is further supported by the fact that the West and Central African clade shows relatively little genetic diversity and is therefore thought to be an evolutionarily young clade. Main conclusions The taxonomic division between an African and an Asian subspecies does not fully reflect the overall genetic diversity within lions. In order to conserve genetic diversity within the species, genetically distinct lineages should be prioritized. Understanding the geographic pattern of genetic diversity is key to developing conservation strategies, both for in situ management and for breeding of captive stocks.  相似文献   

20.
Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.998, for both systems) compared to tribes (0.917-0.996 for Y-STRs, and 0.958-0.988 for mtDNA haplotypes). The majority of paternal lineages belong to the R1a1, O2a, and H haplogroups (62.7%), while 73.2% of maternal lineages comprise the Indian-specific M*, M5, M30, and R* mtDNA haplogroups, with a sporadic occurrence of West Eurasian lineages. Our study reveals that Orissa Brahmins (a higher caste population) have a genetic affinity with Indo-European speakers of Eastern Europe, although the Y-chromosome data show that the genetic distances of populations are not correlated to their position in the caste hierarchy. The high frequency of the O2a haplogroup and absence of East Asian-specific mtDNA lineages in the Juang and Saora suggest that a migration of Austro-Asiatic tribes to mainland India was exclusively male-mediated which occurred during the demographic expansion of Neolithic farmers in southern China. The phylogeographic analysis of mtDNA and Y-chromosomes revealed varied ancestral sources for the diverse genetic components of the populations of Eastern India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号