首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Dobson 《Mammal Review》1998,28(2):77-88
The natural distribution of the 17 non-flying mammal species occurring wild in both the Maghreb (north-west Africa) and Iberia (south-west Europe) is considered. It is concluded that only four species – Red Fox Vulpes vulpes, Wild Boar Sus scrofa, Wild Cat Felis silvestris and Otter Lutra lutra – are native to both regions, while another three – Red Deer Cervus elaphus, Brown Bear Ursus arctos and Aurochs Bos primigenius – were native to North Africa until the mid-Holocene but have probably died out naturally. Algerian Hedgehog Atelerix algirus, Barbary Ape Macaca sylvanus, Genet Genetta genetta and Egyptian Mongoose Herpestes ichneumon are widely accepted as introductions to Europe from North Africa. The remaining six species, and Red Deer now found in Africa, were also probably introduced – Rabbit Oryctolagus cuniculus, Weasel Mustela nivalis, Wood Mouse Apodemus sylvaticus and Lesser White-toothed Shrew Crocidura russula from Europe to Africa; Algerian Mouse Mus spretus from Africa to Europe; Savi’s Pygmy Shrew Suncus etruscus perhaps from the eastern Mediterranean to both Iberia and the Maghreb. There are two Maghrebi species which, although not found in Europe, are more closely related to Palaearctic than to Afrotropical species: Garden Dormouse Eliomys melanurus, probably native to north-west Africa, although possible augmentation of the natural population cannot be ruled out, and Whitaker’s Shrew Crocidura whitakeri, a North African endemic. Removal of so many species of European provenance from the list of mammals native to north-west Africa should not be considered to weaken its position as part of the Palaearctic zoogeographical region. Bats and other, non-mammalian, taxa illustrate the clear faunal relationship between the Maghreb and south-west Europe, whilst emphasizing its distinction from subsaharan Africa.  相似文献   

2.
Palearctic reptiles with wide distribution through the Western Mediterranean are expected to display genetic substructuring because of the combining effects of current or past geographic barriers and climate fluctuations. We have examined this issue by sequencing cytochrome b and 16S rRNA mitochondrial fragments of 80 individuals of the snake Coronella girondica from 71 localities, covering the range of the species across Tunisia, Algeria, Morocco, Spain, Portugal, southern France and north‐western Italy. According to the obtained genealogy, C. girondica is structured into three divergent and well‐supported clades (north‐western Africa, Betic range and Iberia–France–Italy), which greatly match other phylogeographies already published for this region. Our estimations suggest that the divergence among the three clades took place approximately 1.4‐2.0 Ma, which roughly coincides with the Plio‐Pleistocene transition, characterized by an increase in climate variability. The existence of a clade in a narrow belt of south‐eastern Iberia represents another example of the high endemism rate of the region, with a key geographical situation and an important role in vicariant processes. Since the split among the three major lineages would be take place after the opening of the Strait of Gibraltar, overwater dispersal is here suggested. The subsequent genetic substructuring of these clades during the Pleistocene fits within the refugia‐within‐refugia model, highlighting the importance of the region as a scenario for multiple vicariant events.  相似文献   

3.
  • 1 We reviewed patterns of fruit consumption amongst 10 species of mesocarnivores: red fox Vulpes vulpes, weasel Mustela nivalis, stoat Mustela erminea, polecat Mustela putorius, stone marten Martes foina, pine marten Martes martes, Eurasian badger Meles meles, common genet Genetta genetta, Egyptian mongoose Herpestes ichneumon and wildcat Felis silvestris in Mediterranean Europe.
  • 2 The 65 reviewed studies recorded 79 different fruits eaten by carnivores, 58 of which were identified to species. Most records (63%) were of fleshy fruits with high pulp content. The frequency of occurrence of fruit items varied widely amongst species and regions. Four of the carnivore species (red fox, stone marten, badger and common genet) included more than 30 fruit species in their diet.
  • 3 A longitudinal pattern was detected in the consumption of fruit in the Mediterranean region, with the frequency of occurrence of fruit consumption increasing towards the east.
  相似文献   

4.
The green woodpecker complex consists of the green woodpecker (Picus viridis), distributed from Western Europe to the Caucasus and Iran, and the related LeVaillant's woodpecker (P. vaillantii), distributed in north‐western Africa from central Morocco to Tunisia. Much of the habitat of green woodpeckers in Central and Northern Europe was covered by ice, tundra, steppe or other unsuitable habitat during the Pleistocene; consequently, they must have come to occupy most of their current range during the past 20 000 years. We used complete mitochondrial ND2 sequences from populations throughout the range to investigate the genetic structure and evolutionary history of this complex. Three well‐differentiated clades, corresponding to three biogeographical regions, were recovered; 89% of the total genetic variance was distributed among these three regions. The populations in North Africa were sister to those of Europe and, within Europe, Iberia was sister to the rest of Europe and the Near East. This suggests that the post‐glacial colonization of most of Europe occurred from a refuge east of Iberia, probably in Italy or the Balkans; there was no substantial divergence among these regions. In addition, a population sample from Iran was genetically distinct from those of Western Europe, indicating a history of genetic isolation and an additional Pleistocene refuge east of the well‐known Balkan refugia and south of the Caucasus. Within Europe, northern populations were less genetically variable than southern ones, consistent with recent colonization. There was significant isolation‐by‐distance across Europe, indicating restricted gene flow; this was particularly apparent between western populations and those of the Caucasus and Iran. We recognize four species in the complex. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 710–723.  相似文献   

5.
Aim The Pleistocene glaciations were the most significant historical event during the evolutionary life span of most extant species. However, little is known about the consequences of these climate changes for the distribution and demography of marine animals of the north‐eastern Atlantic. The present study focuses on the phylogeographic and demographic patterns of the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae), a small marine demersal fish. Location North‐eastern Atlantic, Mediterranean, Irish, North and Baltic seas. Methods Analysis was carried out by sequencing the mtDNA cytochrome b gene of sand gobies from 12 localities throughout the species’ range, and using this information in combination with published data of allozyme markers and mtDNA control region sequences. Several phylogenetic methods and a network analysis were used to explore the phylogeographic pattern. The historical demography of P. minutus was studied through a mismatch analysis and a Bayesian skyline plot. Results Reciprocal monophyly was found between a Mediterranean Sea (MS) clade and an Atlantic Ocean (AO) clade, both with a Middle Pleistocene origin. The AO Clade contains two evolutionary significant units (ESUs): the Iberian Peninsula (IB) Group and the North Atlantic (NA) Group. These two groups diverged during Middle Pleistocene glacial cycles. For the NA Group there is evidence for geographic sorting of the ancestral haplotypes with recent radiations in the Baltic Sea, Irish Sea, North Sea and Bay of Biscay. The demographic histories of the Mediterranean Clade and the two Atlantic ESUs were influenced mainly by expansions dated as occurring during the Middle Pleistocene glaciations and post‐Eem, respectively. Main conclusions The pre‐LGM (Last Glacial Maximum) subdivision signals were not erased for P. minutus during the LGM. Middle Pleistocene glaciations yielded isolated and differently evolving sets of populations. In contrast to the case for most other taxa, only the northern Atlantic group contributed to the post‐glacial recolonization. The historical demography of Mediterranean sand gobies was influenced mainly by Middle Pleistocene glaciations, in contrast to that of the Atlantic populations, which was shaped by Late Pleistocene expansions.  相似文献   

6.
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of “migratory routes” in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians—from Huelva and Granada provinces—and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.  相似文献   

7.
According to recent phylogeographical evidence, the common genet (Genetta genetta) and the Egyptian mongoose (Herpestes ichneumon) have dissimilar dispersal histories from Maghreb to south‐western Europe. Through comparative ecological niche modelling based on >1100 occurrences, we assessed whether the niche dynamics (i.e. niche shift versus conservatism) of the two species in their European ranges reflected DNA‐based demographic scenarios. Sensitivity analyses and projections of climatic niche models from the species' native ranges (Africa and Middle East) to Europe yielded support for (1) partial climatic niche shift in the northern European range of the common genet and (2) climatic niche conservatism in the Egyptian mongoose. Our results were consistent with demographic scenarios that predicted multiple introductions and demographic expansion in the common genet and long‐term, stable historical demography in the Egyptian mongoose. Our models further predicted a range expansion of the common genet in north‐western France and Italy, and progression of the Egyptian mongoose into Europe from the Near East. Overall, our study suggested a scenario of different niche dynamics in Europe for these two species of African carnivores, supporting the view that historical factors such as dispersal and demographic history may shape niche dynamics and thus distribution potential in colonized ranges. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 737–751.  相似文献   

8.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

9.
Recent Quaternary geological and climate events have shaped the evolutionary histories of plant species in the Mediterranean basin, one of the most important hotspots of biodiversity. Genetic analyses of the western Mediterranean Cheirolophus intybaceus s.l. (Asteraceae) based on AFLP were conducted to establish the relationships between its close species and populations, to reconstruct the phylogeography of the group and to analyse potential unidirectional versus bidirectional dispersals between the Ibero‐Provençal belt and the Balearic Islands. AFLP data revealed two main genetic groups, one constituted by the Balearic populations and Garraf (NE Iberia) and the other formed by the remaining mainland populations that were further sub‐structured into two geographically separated subgroups (SE + E Iberia and NE Iberia + SW France). Genetic diversity and spatial structure analyses suggested a mid‐Pleistocene scenario for the origin of C. intybaceus in southern Iberia, followed by dispersal to the north and a single colonisation event of the Balearic archipelago from the near Dianic NE Iberian area. This hypothesis was supported by paleogeographic data, which showed the existence of terrestrial connections between the continent and the islands during the Middle–Late Pleistocene marine regressions, whereas the more recent single back‐colonisation of the mainland from Mallorca might be explained by several hypotheses, such as long‐distance dispersal mediated by migratory marine birds or sea currents.  相似文献   

10.
The Mediterranean Basin, connected by cultural exchanges since prehistoric times, provides an outstanding framework to study species translocations. We address here the early phases of the successful invasion of the common genet (Genetta genetta), a small carnivoran supposedly introduced from Africa to Europe during historical times, by assessing mitochondrial nucleotide variability in 134 individuals from its native and invasive ranges. We identify four lineages within the native species range [northern Algeria, Peninsular Arabia, southern Africa and western Africa + Maghreb (including northern Algeria)], in contradiction with morphological taxonomy. We propose that the co-occurrence in Maghreb of two divergent lineages (autochthonous and western African) is due to secondary contact through intermittent permeability of the Saharan belt during the Plio-Pleistocene. Estimates of coalescence time and genetic diversity, in concert with other available evidences in the literature, indicate that the origin of European populations of common genets is in Maghreb, possibly restricted to northern Algeria. The autochthonous mitochondrial lineage of Maghreb was the only contributor to the European pool, suggesting that translocations were associated to a cultural constraint such as a local use of the species, which might have artificially excluded the western African lineage. Haplotype network and nested clade analysis (NCA) provide evidence for independent events of introductions throughout Spain (Andalucia, Cataluña, and the Balearic Isl.)—and, to a lesser extent, Portugal—acting as a ‘translocation hotspot’. Due to the reduced number of northern Algerian individuals belonging to the autochthonous mitochondrial lineage of Maghreb, it remains impossible to test hypotheses of historical translocations, although a main contribution of the Moors is likely. Our demographic analyses support a scenario of very recent introduction of a reduced number of individuals in Europe followed by rapid population expansion. We suggest that an exceptional combination of factors including multiple translocations, human-driven propagation across natural barriers, and natural processes of colonization allowed by a wide ecological tolerance, promoted the successful spread of the common genet into Europe.  相似文献   

11.
Pleistocene glaciations often resulted in differentiation of taxa in southern European peninsulas, producing the high levels of endemism characteristic of these regions (e.g. the Iberian Peninsula). Despite their small ranges, endemic species often exhibit high levels of intraspecific differentiation as a result of a complex evolutionary history dominated by successive cycles of fragmentation, expansion and subsequent admixture of populations. Most evidence so far has come from the study of species with an Atlantic distribution in northwestern Iberia, and taxa restricted to Mediterranean‐type habitats remain poorly studied. The Iberian Midwife toad (Alytes cisternasii) is a morphologically conserved species endemic to southwestern and central Iberia and a typical inhabitant of Mediterranean habitats. Applying highly variable genetic markers from both mitochondrial and nuclear genomes to samples collected across the species’ range, we found evidence of high population subdivision within A. cisternasii. Mitochondrial haplotypes and microsatellites show geographically concordant patterns of genetic diversity, suggesting population fragmentation into several refugia during Pleistocene glaciations followed by subsequent events of geographical and demographic expansions with secondary contact. In addition, the absence of variation at the nuclear β‐fibint7 and Ppp3caint4 gene fragments suggests that populations of A. cisternasii have been recurrently affected by episodes of extinction and recolonization, and that documented patterns of population subdivision are the outcome of recent and multiple refugia. We discuss the evolutionary history of the species with particular interest in the increasing relevance of Mediterranean refugia for the survival of genetically differentiated populations during the Pleistocene glaciations as revealed by studies in co‐distributed taxa.  相似文献   

12.
Aim To reconstruct the temporal and biogeographical history of Old World disjunctions in Scabiosa (Dipsacaceae) and the timing of diversification in the Mediterranean Basin, in order to evaluate the importance of biogeographical and climatological history (particularly the onset of a mediterranean climate) in shaping Scabiosa distributions. Location Europe and the Mediterranean Basin, southern Africa and eastern Asia. Methods This study uses maximum‐likelihood and Bayesian phylogenetic analyses of chloroplast DNA (atpB–rbcL, trnL–trnF, trnS–trnG, psbA–trnH) and nuclear ribosomal DNA [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] from 24 out of c. 37 ingroup taxa, beast molecular dating, and the dispersal–extinction–cladogenesis method (Lagrange ) to reconstruct ancestral geographical ranges and the timing of diversification of the major clades of Scabiosa. Results Biogeographical and divergence time reconstructions showed that Scabiosa originated during the Miocene and diversified in Europe, followed by independent movements into Asia and Africa. Several of the major clades were inferred to have radiated sometime between the late Miocene and early Pleistocene, a timeframe that encompasses the onset of the mediterranean climate in Europe. More recent middle–late Pleistocene radiations in the Mediterranean Basin and southern Africa have played a large role in Scabiosa diversification. Main conclusions Members of Scabiosa appear to have capitalized on adaptations to montane and/or dry conditions in order to colonize similar habitats in different biogeographical regions. The formation of the East African Rift mountains is potentially of great importance in explaining the southward migration of Scabiosa. The initial diversification of Scabiosa in Europe during the Miocene is not consistent with the initiation of the mediterranean climate, but may instead be associated with increased aridity and the retreat of subtropical lineages during this time. However, the radiation of some of the major subclades within Scabiosa may have been associated with an emerging mediterranean climate. More recent and rapid radiations in both the Mediterranean Basin and southern Africa highlight the probable importance of Pleistocene climate fluctuations in Scabiosa diversification.  相似文献   

13.
We have analyzed Y-chromosome diversity in the western Mediterranean area, examining p49a,f TaqI haplotype V and subhaplotypes Vb (Berber) and Va (Arab). A total of 2,196 unrelated DNA samples, belonging to 22 populations from North Africa and the southern Mediterranean coast of occidental Europe, have been typed. Subhaplotype Vb, predominant in a Berber population of Morocco (63.5%), was also found at high frequencies in southern Portugal (35.9%) and Andalusia (25.4%). The Arab subhaplotype Va, predominant in Algeria (53.9%) and Tunisia (50.6%), was also found at a relatively high frequency in Sicily (23.1%) and Naples (16.4%); its highest frequency in Iberia was in northern Portugal (22.8%) and Andalusia (15.5%). In Iberia there is a gradient of decreasing frequencies in latitude for both subhaplotypes Va and Vb, related to eight centuries of Muslim domination (8th to 15th centuries) in southern Iberia.  相似文献   

14.
The genus Charybdis Speta (previously Urginea maritima agg.) was investigated karyologically and genetically throughout its geographic range in the Mediterranean. The different ploidy levels show a strong geographic pattern. Diploid populations are mainly found along the northern coast of Africa with C. pancration extending northwards from Tunisia to southern Italy. Tetraploid populations are most densely distributed in the eastern Mediterranean but are also found in North Africa, on the Balearic and Canary Islands. Hexaploid populations are restricted to the Iberian Peninsula and adjacent Morocco and Algeria. Chloroplast microsatellite data suggest that determination of ploidy levels alone is insufficient to adequately describe the existing populations. Especially the tetraploid and hexaploid populations exhibit additional genetic differentiation and geographic structuring. AFLP data indicate that tetraploid populations from southern Italy are of hybrid origin. Phylogenetic analysis further revealed that the genera Urginea Steinh. and Charybdis are not directly related to each other but have strong ties to genera from southern Africa. A possible colonization scenario of the Mediterranean via NW Africa and Iberia is discussed.  相似文献   

15.
Aim The Mediterranean region is often regarded as a crossroads where species of various origins meet. However, the biogeographical relationships between this region and contiguous Saharan, Macaronesian and Irano‐Turanian regions have not been investigated in detail. The aim of this study was to characterize the phylogeography of the circum‐Mediterranean species Myrtus communis and to investigate the origin of isolated central Saharan populations of Myrtus nivellei. Location The distribution ranges of M. communis from Macaronesia to the Irano‐Turanian region (173 sampled populations) and of M. nivellei in the mountains (Hoggar, Tassili n’Ajjer, Immidir, Tibesti) of the central Sahara (23 populations). Methods Nuclear ribosomal DNA (nrDNA) sequences of Myrtaceae were used to root the phylogeny of Myrtus, and to date its crown node, according to a detailed review of the palaeobotanical records used for multiple fossil calibration. Chloroplast DNA (cpDNA) sequences were analysed through the determination of genetic diversity indices and by statistical phylogeography. Results Both cpDNA and nrDNA markers indicated east–west genetic differentiation within M. communis. During the late Miocene, a key vicariance event affected the previous circum‐Mediterranean distribution of Myrtus, leading to the isolation of eastern populations. During the late Miocene or early Pliocene, two clades diverged: one is now scattered in the Mediterranean Basin and adjacent regions, whereas the other evolved in the western Mediterranean region. The differentiation of lineages during the Plio‐Pleistocene occurred mainly in the western part of the Mediterranean Basin, which has been at the origin of migrations towards Macaronesian islands and Saharan mountains. This is one of the first plant phylogeographical studies to report migrations from the Mediterranean to the Sahara. Main conclusions The genus Myrtus has persisted in the Mediterranean region since at least the Neogene and its biogeography reflects the cumulation of the species’ responses to successive palaeoenvironmental changes. The current distribution of the genus Myrtus in the Mediterranean Basin and in isolated areas, such as the Macaronesian islands and Saharan mountains, can be explained by the striking ability of this plant not only to persist locally in various refugia, but also to migrate.  相似文献   

16.
Aim The heather Erica arborea L. is a dominant element of the circum‐Mediterranean region. Its broad, disjunct distribution, ranging from Macaronesia to eastern Africa, is consistent with the fragmentation of the evergreen tropical and subtropical forests that dominated Europe and North Africa in the Tertiary. This study aims to investigate phylogeographical patterns in E. arborea and to determine whether the current disjunct distribution of the species is a relict of a once wider distribution, or a recent range expansion in response to the establishment of suitable conditions. Location Mediterranean, Macaronesia, North and eastern Africa. Methods A total of 105 samples were collected across the species’ distribution range and sequenced at four cpDNA loci (atpB–rbcL, matK, trnH–psbA and rpl16). Phylogenetic reconstructions, molecular dating techniques and Bayesian ancestral area reconstructions were used in combination with population genetic statistics (haplotype diversity, NST, FST, Fu’s FS) to describe the pattern of present genetic diversity in E. arborea and infer its biogeographical history. Results Haplotype diversity in Macaronesia and the east and central Mediterranean is much lower than that observed in eastern Africa/Arabia and the western Mediterranean. Bayesian ancestral area reconstructions and molecular dating suggest that E. arborea colonized the Mediterranean westwards from eastern Africa/Arabia at least twice during a time period ranging between the upper Miocene and the upper Pleistocene. Main conclusions The phylogeography of E. arborea involves a complex history of range expansions and contractions, which has resulted in a pattern of distribution that mimics that expected for a Tertiary vicariance event. Despite the presence of a late Tertiary refugium in the Iberian Peninsula, the current distribution of the species throughout the Mediterranean is explained by a Pleistocene expansion originating from eastern Africa. One explanation for the isolation of the Iberian refugium is the rapidity of the most recently identified colonization wave, as inferred by the absence of global phylogeographical signal in the data and significantly negative values of Fu’s FS statistic for European populations. Macaronesia was colonized during each of these two expansion waves, confirming that the laurisilva (laurel forest flora) is a complex entity including both ancient relicts and recent colonizers.  相似文献   

17.
《Comptes rendus biologies》2014,337(11):646-656
Andalusia is the most densely populated region of Spain since ancient times, and has a rich history of contacts across the Mediterranean. Earlier studies have underlined the relatively high frequency of the Sub-Saharan GM 1,17 5* haplotype in western Andalusia (Huelva province, n = 252) and neighbouring Atlantic regions. Here, we provide novel data on GM/KM markers in eastern Andalusians (n = 195) from Granada province, where African GM*1,17 5* frequency is relatively high (0.044). The most frequent GM haplotypes in Andalusia parallel the most common in Europe. Altogether, these data allow us to gain insight into the genetic diversity of southern Iberia. Additionally, we assess population structure by comparing our Iberian samples with 41 Mediterranean populations. GM haplotype variation across the Mediterranean reflects intense and complex interactions between North Africans and South Europeans along human history, highlighting that African influence over the Iberian Peninsula does not follow an isotropic pattern.  相似文献   

18.
Aim To study the patterns of genetic variation and the historical events and processes that influenced the distribution and intraspecific diversity in Hyla meridionalis Boettger, 1874. Location Hyla meridionalis is restricted to the western part of the Mediterranean region. In northern Africa it is present in Tunisia, Algeria and Morocco. In south‐western Europe it is found in the south of France, north‐western Italy and north‐eastern and south‐western Iberian Peninsula. There are also insular populations, as in the Canaries and Menorca. Methods Sampling included 112 individuals from 36 populations covering the range of the species. We used sequences of mitochondrial DNA Cytochrome Oxidase I (COI) for the phylogeographical analysis (841 bp) and COI plus a fragment including part of tRNA lysine, ATP synthase subunits 6 and 8 and part of Cytochrome Oxidase III for phylogenetic analyses (2441 bp). Phylogenetic analyses were performed with paup *4.0b10 (maximum likelihood, maximum parsimony) and Mr Bayes 3.0 (Bayesian analysis). Nested clade analysis was performed using tcs 1.18 and Geo Dis 2.2. A dispersal‐vicariant analysis was performed with diva 1.0 to generate hypotheses about the geographical distribution of ancestors. Results We found little genetic diversity within samples from Morocco, south‐western Europe and the Canary Islands, with three well‐differentiated clades. One is distributed in south‐western Iberia and the High Atlas, Anti‐Atlas and Massa River in Morocco. The second is restricted to the Medium Atlas Mountains. The third one is present in northern Morocco, north‐eastern Iberia, southern France and the Canaries. These three groups are also represented in the nested clade analysis. Sequences from Tunisian specimens are highly divergent from sequences of all other populations, suggesting that the split between the two lineages is ancient. diva analysis suggests that the ancestral distribution of the different lineages was restricted to Africa, and that an explanation of current distribution of the species requires three different dispersal events. Main conclusions Our results support the idea of a very recent colonization of south‐western Europe and the Canary Islands from Morocco. South‐western Europe has been colonized at least twice: once from northern Morocco probably to the Mediterranean coast of France and once from the western coast of Morocco to southern Iberia. Human transport is a likely explanation for at least one of these events. Within Morocco, the pattern of diversity is consistent with a model of mountain refugia during hyperarid periods within the Pleistocene. Evaluation of the phylogenetic relationships of Tunisian haplotypes will require an approach involving the other related hylid taxa in the area.  相似文献   

19.
Since the late 1990s, molecular techniques have fuelled debate about the role of Pleistocene glacial cycles in structuring contemporary avian diversity in North America. The debate is still heated; however, there is widespread agreement that the Pleistocene glacial cycles forced the repeated contraction, fragmentation, and expansion of the North American biota. These demographic processes should leave genetic 'footprints' in modern descendants, suggesting that detailed population genetic studies of contemporary species provide the key to elucidating the impact of the late Quaternary (late Pleistocene-Holocene). We present an analysis of mitochondrial DNA (mtDNA) variation in the mountain chickadee (Poecile gambeli) in an attempt to examine the genetic evidence of the impact of the late Quaternary glacial cycles. Phylogenetic analyses reveal two strongly supported clades of P. gambeli: an Eastern Clade (Rocky Mountains and Great Basin) and a Western Clade (Sierra Nevada and Cascades). Post-glacial introgression is apparent between these two clades in the Mono Lake region of Central California. Within the Eastern Clade there is evidence of isolation-by-distance in the Rocky Mountain populations, and of limited gene flow into and around the Great Basin. Coalescent analysis of genetic variation in the Western Clade indicates that northern (Sierra Nevada/Cascades) and southern (Transverse/Peninsular Ranges) populations have been isolated and evolving independently for nearly 60,000 years.  相似文献   

20.
Memorization of Scent Marks in Genets (Genetta genetta L.): Duration of Female Memory of Male Scent Marks The aim of this work was to study the memorization of scent marks of known males by females in genets (Genetta genetta L.). An attempt was made to determine how long, after separation from a given male, females could discriminate between his scent marks and those of strange males. Significant differences in sniffing duration at the scent marks were observed nine weeks after separation. These results showed that olfactory cues could permit individual recognition in genets, and that memorizing the scent marks could also act in the regulation of aggressive behaviour in free-living animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号