首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

2.
Human-induced habitat conversion and degradation, along with accelerating climatic change, have resulted in considerable global biodiversity loss. Nevertheless, how local ecological assemblages respond to the interplay between climate and land-use change remains poorly understood. Here, we examined the effects of climate and land-use interactions on butterfly diversity in different ecosystems of southwestern China. Specifically, we investigated variation in the alpha and beta diversities of butterflies in different landscapes along human-modified and climate gradients. We found that increasing land-use intensity not only caused a dramatic decrease in butterfly alpha diversity but also significantly simplified butterfly species composition in tropical rainforest and savanna ecosystems. These findings suggest that habitat modification by agricultural activities increases the importance of deterministic processes and leads to biotic homogenization. The land-use intensity model best explained species richness variation in the tropical rainforest, whereas the climate and land-use intensity interaction model best explained species richness variation in the savanna. These results indicate that climate modulates the effects of land-use intensity on butterfly alpha diversity in the savanna ecosystem. We also found that the response of species composition to climate varied between sites: specifically, species composition was strongly correlated with climatic distance in the tropical rainforest but not in the savanna. Taken together, our long-term butterfly monitoring data reveal that interactions between human-modified habitat change and climate change have shaped butterfly diversity in tropical rainforest and savanna. These findings also have important implications for biodiversity conservation under the current era of rapid human-induced habitat loss and climate change.  相似文献   

3.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

4.
Potential interactions between climate change and exotic plant invasions may affect areas of high conservation value, such as land set aside for the protection of endangered species or ecological communities. We investigated this issue in eastern Australia using species distribution models for five exotic vines under climate regimes for 2020 and 2050. We examined how projected changes in the distribution of climatically suitable habitat may coincide with the remaining remnants of an endangered ecological community—littoral rainforests—in this region. The number of known infestations of each weed in tropical, subtropical and temperate areas was used to assess the likelihood of further expansion into areas projected to provide suitable habitat under future conditions. Littoral rainforest reserves were consistently predicted to provide bioclimatically suitable habitat for the five vines examined under both current and future climate scenarios. We explore the consequences and potential strategies for managing exotic plant invasions in these protected areas in the coming decades.  相似文献   

5.
Habitat classification systems are poorly developed for tropical rainforests, where extremely high plant species richness causes numerous methodological difficulties. We used an indicator species approach to classify primary rainforest vegetation for purposes of comparative wildlife habitat studies. We documented species composition of pteridophytes (ferns and fern allies) in 635 plots (2×100 m) along 8 transects within a continuous rainforest landscape in northeastern Peruvian Amazonia. Considerable floristic variation was found when the data were analyzed using multivariate methods. The obtained forest classification was interpreted with the help of indicator value analysis and known soil preferences of the pteridophyte species. The final classification included four forest types: 1) inundated forests, 2) terrace forests, 3) intermediate tierra firme forests and 4) Pebas Formation forests. This rapid and relatively simple vegetation classification technique offers a practical, quantitative method for large-scale vegetation inventory in complex rainforest landscapes.  相似文献   

6.
An analysis using an artificial neural network model suggests that the tropical forests of north Queensland are highly sensitive to climate change within the range that is likely to occur in the next 50–100 years. The distribution and extent of environments suitable for 15 structural forest types were estimated, using the model, in 10 climate scenarios that include warming up to 1°C and altered precipitation from –10% to +20%. Large changes in the distribution of forest environments are predicted with even minor climate change. Increased precipitation favours some rainforest types, whereas decreased rainfall increases the area suitable for forests dominated by sclerophyllous genera such as Eucalyptus and Allocasuarina. Rainforest environments respond differentially to increased temperature. The area of lowland mesophyll vine forest environments increases with warming, whereas upland complex notophyll vine forest environments respond either positively or negatively to temperature, depending on precipitation. Highland rainforest environments (simple notophyll and simple microphyll vine fern forests and thickets), the habitat for many of the region’s endemic vertebrates, decrease by 50% with only a 1°C warming. Estimates of the stress to present forests resulting from spatial shifts of forest environments (assuming no change in the present forest distributions) indicate that several forest types would be highly stressed by a 1°C warming and most are sensitive to any change in rainfall. Most forests will experience climates in the near future that are more appropriate to some other structural forest type. Thus, the propensity for ecological change in the region is high and, in the long term, significant shifts in the extent and spatial distribution of forests are likely. A detailed spatial analysis of the sensitivity to climate change indicates that the strongest effects of climate change will be experienced at boundaries between forest classes and in ecotonal communities between rainforest and open woodland.  相似文献   

7.
Refuges protect plant and animal populations from disturbance. Knowledge of refuges from disturbance in mediterranean climate rivers (med-rivers) has increased the last decade. We review disturbance processes and their relationship to refuges in streams in mediterranean climate regions (med-regions). Med-river fauna show high endemicity and their populations are often exposed to disturbance; hence the critical importance of refuges during (both seasonal and supraseasonal) disturbances. Disturbance pressures are increasing in med-regions, in particular from climatic change, salinisation, sedimentation, water extraction, hydropower generation, supraseasonal drought, and wildfire. Med-rivers show annual cycles of constrained precipitation and predictable seasonal drying, causing the biota to depend on seasonal refuges, in particular, those that are spatially predictable. This creates a spatial and temporal mosaic of inundation that determines habitat extent and refuge function. Refuges of sufficient size and duration to maintain populations, such as perennially flowing reaches, sustain biodiversity and may harbour relict populations, particularly during increasing aridification, where little other suitable habitat remains in landscapes. Therefore, disturbances that threaten perennial flows potentially cascade disproportionately to reduce regional scale biodiversity in med-regions. Conservation approaches for med-river systems need to conserve both refuges and refuge connectivity, reduce the impact of anthropogenic disturbances and sustain predictable, seasonal flow patterns.  相似文献   

8.
Conservation of species under climate change relies on accurate predictions of species ranges under current and future climate conditions. To date, modelling studies have focused primarily on how changes in long‐term averaged climate conditions are likely to influence species distributions with much less attention paid to the potential effect of extreme events such as droughts and heatwaves which are expected to increase in frequency over coming decades. In this study we explore the benefits of tailoring predictor variables to the specific physiological constraints of species, or groups of species. We show how utilizing spatial predictors of extreme temperature and water availability (heat‐waves and droughts), derived from high‐temporal resolution, long‐term weather records, provides categorically different predictions about the future (2070) distribution of suitable environments for 188 mammal species across different biomes (from arid zones to tropical environments) covering the whole of continental Australia. Models based on long‐term averages‐only and extreme conditions‐only showed similarly high predictive performance tested by hold‐out cross‐validation on current data, and yet some predicted dramatically different future geographic ranges for the same species under 2070 climate scenarios. Our results highlight the importance of accounting for extreme conditions/events by identifying areas in the landscape where species may cope with average conditions, but cannot persist under extreme conditions known or predicted to occur there. Our approach provides an important step toward identifying the location of climate change refuges and danger zones that goes beyond the current standard of extrapolating long‐term climate averages.  相似文献   

9.
The ability of species to shift their distributions in response to climate change may be impeded by lack of suitable climate or habitat between species’ current and future ranges. We examined the potential for climate and forest cover to limit the movement of bird species among sites of biodiversity importance in the Albertine Rift, East Africa, a biodiversity hotspot. We forecasted future distributions of suitable climate for 12 Albertine Rift endemic bird species using species distribution models based on current climate data and projections of future climate. We used these forecasts alongside contemporary forest cover and natal dispersal estimates to project potential movement of species over time. We identified potentially important pathways for the bird species to move among 30 important bird and biodiversity areas (IBAs) that are both currently forested and projected to provide suitable climate over intervening time periods. We examined the relative constraints imposed by availability of suitable climate and forest cover on future movements. The analyses highlighted important pathways of potential dispersal lying along a north‐south axis through high elevation areas of the Albertine Rift. Both forest availability and climate suitability were projected to influence bird movement through these landscapes as they are affected by future climate change. Importantly, forest cover and areas projected to contain suitable climate in future were often dissociated in space, which could limit species’ responses to climate change. A lack of climatically suitable areas was a far greater impediment to projected movement among IBAs than insufficient forest cover. Although current forest cover appears sufficient to facilitate movement of bird species in this region, protecting the remaining forests in areas also projected to be climatically suitable for species to move through in the future should be a priority for adaptation management.  相似文献   

10.
Understanding how spatial patterning relates to ecological processes is fundamental to define important species–environment associations at broader scales. Analyses targeting habitat structure (i.e. composition and configuration) in terrestrial landscapes are increasing, but similar studies in marine landscapes are still relatively uncommon. In this study, we explored how seascape structure and complexity (determined from significant spatial pattern metrics) influenced summer and autumn fish assemblage composition in 30 seagrass (Zostera marina) meadows along the west coast of Sweden. Species density was not influenced by seascape structure in any season. In contrast, the majority of significant fish assemblage variables were influenced by seascape structure during the summer (i.e. abundance and proportion of juveniles, abundance of Labridae and abundance of occasional shallow‐water visitors) whilst fewer in the autumn (i.e. abundance of occasional shallow‐water visitors and Synganthidae). For instance, less complex seascapes were more suitable for juvenile assemblages in summer, as these seascapes exhibit larger patch sizes of appropriate habitat (e.g. Z. marina) and less edge boundaries providing refuges from predators and food resources. Abundances of migrating fish, such as the sea trout Salmo trutta, also responded positively to a less complex seascape in the summer though perhaps ecological processes, such as prey availability, were additional contributing factors driving this relationship. High complexity seascapes only had a positive influence on the abundance of taxa using multiple habitats (Labridae during the summer). Our study shows that fish assemblages in temperate marine environments are significantly linked to spatial habitat patterning and seascape complexity. This offers valuable insights into species–habitat–seascape linkages, information important for coastal conservation and marine spatial planning.  相似文献   

11.
An artificial neural network is used to classify environments, including climate, terrain and soil variables, according to their suitability for fifteen structural/environmental forest classes in the Wet Tropics Bioregion of north-east Queensland. We map the environments characteristic of these forest classes in four climate regimes (the present and three past climate scenarios), quantify the changes in area of these environments in response to past regional changes in climate and identify areas that would have been environmentally suitable for rainforests at last glacial maximum (glacial refugia). We also identify areas that would have been suitable for upland and highland rainforest classes during the warmest parts of the interglacial (interglacial refugia) and map locations that consistently remain favourable to specific forest classes despite large changes in climate.In the climate of the last glacial maximum (LGM), rainforest environments are predicted in three relatively distinct refugia in the northern, central and southern Wet Tropics. Only three percent of the total area contains lowland, Mesophyll Vine Forest and the majority of the area of the rainforest refugia supports upland rainforest classes. In the cool, wet climate of the Pleistocene/Holocene transition (PHT), rainforest environments expand to form a more or less continuous block from the northern limits of the region to the Walter Hill Range, except for discontinuous patches extending through the Seaview and Paluma Ranges in the south. During the Holocene climatic optimum (HCO), rainforest environments become more fragmented, especially in the south. Lowland rainforest environments are very extensive in this climate while upland rainforest classes are restricted to what we term “interglacial refugia”.Estimated distributions and stable locations (consistently predicted in all four climate scenarios) for the various rainforest environment classes are our main, novel contribution. Each forest environment responds individualistically to climate change. Our results confirm the highly dynamic nature of the Wet Tropics landscape and present a much more detailed picture of landscape change since the late Pleistocene than previously has been available. This mapping exercise should be useful in the future for analyses of present-day biogeographic patterns. We argue that empirical modelling approaches have an important role in palaeoecology and global change research that is complementary to the developing mechanistic methods.  相似文献   

12.
Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.  相似文献   

13.
Gap percolation in rainforests   总被引:1,自引:0,他引:1  
  相似文献   

14.
Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate‐change refuges, shading corals from the harmful interaction between high sea‐surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m?2) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20–30°N and 15–25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) – habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate‐change‐associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m?2 s?1, and predict that 16% of reef‐coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef‐coral persistence under climate change.  相似文献   

15.
Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of 'young' and 'old' species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.  相似文献   

16.
Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.  相似文献   

17.
Abstract.  1. Metapopulation and island biogeography theory assume that landscapes consist of habitat patches set in a matrix of non-habitat. If only a small proportion of species conform to the patch–matrix assumptions then metapopulation theory may only describe special cases rather than being of more general ecological importance.
2. As an initial step towards understanding the prevalence of metapopulation dynamics in a naturally fragmented landscape, the distribution of beetle species in three replicates of three habitat types was examined, including rainforest and eucalypt forest (the habitat patches), and buttongrass sedgeland (the matrix), in south-west Tasmania, Australia.
3. Ordination methods indicated that the buttongrass fauna was extremely divergent from the fauna of forested habitats. Permutation tests showed that the abundance of 13 of 17 commonly captured species varied significantly among habitats, with eight species confined to eucalypts or rainforest, and three species found only in buttongrass. Approximately 60% of species were confined to forested habitat implying that metapopulation theory has the potential to be very important in the forest–buttongrass landscape.
4. Although floristically the rainforest and eucalypts were extremely distinct, the beetle faunas from eucalypts and rainforests overlapped substantially. Therefore rainforest patches connected by eucalypt forest represent continuous habitat for most species.
5. Other studies report a wide range of values for the proportion of patch-specific species in fragmented landscapes. Understanding the environmental or historical conditions under which a high proportion of species become patch specialists would help to identify where spatial dynamic theory may be especially applicable, and where habitat loss and fragmentation poses the greatest threat to biodiversity.  相似文献   

18.
The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World''s most biodiverse regions may be shaped by long-term climate history as well as contemporary environment.  相似文献   

19.
Null‐model analysis of co‐occurrence patterns is a powerful tool to identify ‘structure’ in community ecology data sets. We evaluated the community structure of chameleons in rainforest regions of Nigeria and Cameroon using available data in the literature, including peer‐reviewed articles and unpublished environmental reports to industries. We performed Monte Carlo simulations (5000 iterations, using the sequential swap algorithm) under several model assumptions to derive co‐occurrence patterns among species. Food and spatial (habitat) segregation patterns in both lowland rainforest and montane forest were investigated. We subjected four indices of co‐occurrence patterns (C‐ratio, number of checkerboard species pairs, number of species combinations, and V‐score) to randomization procedures. Overall, the chameleon communities do not show random organization, but instead exhibit precise deterministic patterns. In lowland rainforest, chameleon communities are assembled deterministically along the food niche resource axis, but not along the habitat niche resource axis. The opposite holds for chameleon communities in montane rainforest. We predict that these patterns can be generalized to other regions of tropical Africa, thus helping to determine the general structure of chameleon communities in tropical African forests.  相似文献   

20.
Habitat loss and climate change pose a double jeopardy for many threatened taxa, making the identification of optimal habitat for the future a conservation priority. Using a case study of the endangered Bornean orang‐utan, we identify environmental refuges by integrating bioclimatic models with projected deforestation and oil‐palm agriculture suitability from the 1950s to 2080s. We coupled a maximum entropy algorithm with information on habitat needs to predict suitable habitat for the present day and 1950s. We then projected to the 2020s, 2050s and 2080s in models incorporating only land‐cover change, climate change or both processes combined. For future climate, we incorporated projections from four model and emission scenario combinations. For future land cover, we developed spatial deforestation predictions from 10 years of satellite data. Refuges were delineated as suitable forested habitats identified by all models that were also unsuitable for oil palm – a major threat to tropical biodiversity. Our analyses indicate that in 2010 up to 260 000 km2 of Borneo was suitable habitat within the core orang‐utan range; an 18–24% reduction since the 1950s. Land‐cover models predicted further decline of 15–30% by the 2080s. Although habitat extent under future climate conditions varied among projections, there was majority consensus, particularly in north‐eastern and western regions. Across projections habitat loss due to climate change alone averaged 63% by 2080, but 74% when also considering land‐cover change. Refuge areas amounted to 2000–42 000 km2 depending on thresholds used, with 900–17 000 km2 outside the current species range. We demonstrate that efforts to halt deforestation could mediate some orang‐utan habitat loss, but further decline of the most suitable areas is to be expected given projected changes to climate. Protected refuge areas could therefore become increasingly important for ongoing translocation efforts. We present an approach to help identify such areas for highly threatened species given environmental changes expected this century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号