首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic shielding constants for an isolated fullerene C60, cucurbituril CB[9], and the host-guest complex C60@CB[9] were calculated as a function of separation of the monomers. Our results in the gas phase and water indicate a significant variation of the magnetic properties for all atoms of the monomers in the complex and after liberation of fullerene C60 from the interior of the CB[9] cavity. The interaction between the two monomers results in a charge transfer that collaborates with a redistribution of electron density to deshield the monomers.
Graphical Abstract NMR spectroscopy alteration on C60@CB[9] host-guest mutual interactions?
  相似文献   

2.
Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins.
Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2
  相似文献   

3.
Using density functional theory (DFT) and molecular dynamics (MD), we studied the interaction of a titanium atom with a half of a C60 fullerene (i.e., C30), formed from the corannulene structure with a pentagonal base. We considered atmospheric pressure and 300 K. We found that the most stable adsorption of the titanium atom on C30 occurs in the concave surface of the molecule. Afterward, we investigated the interaction of the system C30-titanium with carbon monoxide and carbon dioxide molecules, respectively. We found that each of these molecules is chemisorbed, with no dissociation. The value of the adsorption energy for the carbon monoxide molecule varies from ?0.897 to ?1.673 eV, and for the carbon dioxide molecule, it is between ?1.065 and ?1.274 eV. These values depend on the initial orientation of these molecules with respect to TiC30.
Graphical Abstract The TiC30 system chemisorbs CO or CO2?with no dissociation at atmospheric pressure and 300K
  相似文献   

4.
A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor–acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission.
Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs
  相似文献   

5.
The addition of C2 to HCN is of relevant interest in astrochemistry. We studied the pathways of this addition to produce CCCN and estimated its reaction rate using the Master Equation in the circumstellar environment. From the results of this study, it was possible to show that a different pathway in the Surface Potential Energy-PES can also be investigated. In a circumstellar envelop environment, with temperatures varying between 1000 K and 2000 K, the abundances of these species are favorable to this kind of addition, and our branching ratio for the rate constant showed that the new pathway is more favorable in comparison with other possibilities for this range of temperatures in this environment, and must be taken into account in any computation of the rate constant.
Graphical Abstract Branching ratios of pathways involved in the C2 + HCN → CCCN+H addition, at a temperature range of 1000–2000 K
  相似文献   

6.
A dispersion correction is introduced and tested for MNDO. The shift in electron density caused by the interaction between oscillating dipoles in the London picture of dispersion is mimicked by adding a small r?7-dependent attractive nucleus–electron potential to the core Hamiltonian. This potential results in a shift in electron density similar to that used by Feynman to explain dispersion. The resulting parameterized self-consistent and inherently multicenter treatment (MNDO-F) gives good results for CHNO compounds that do not exhibit hydrogen bonds, which MNDO cannot reproduce. This “Feynman” dispersion correction is also applicable to Hartree–Fock and density functional theory.
Graphical abstract The MNDO-F optimized geometry for a C60-fullerene tetramer in a tetrahedral configuration.
  相似文献   

7.
The catalytic pyrolysis pathways of carbonyl compounds in coal were systematically studied using density functional theory (DFT), with benzaldehyde (C6H5CHO) employed as a coal-based model compound and ZnO, γ-Al2O3, and CaO as catalysts. The results show that the products of both pyrolysis and catalytic pyrolysis are C6H6 and CO. However, the presence of any of the catalysts changes the reaction pathway and reduces the energy barrier, indicating that these catalysts promote C6H5CHO decomposition.
Graphical abstract The presence of catalysts changes the reaction pathway and the energy barrier decreases in the order Ea (no catalyst)> Ea (CaO)> Ea (γ-Al2O3)> Ea (ZnO), indicating that these catalysts promote C6H5CHO decomposition.
  相似文献   

8.
High-level ab initio calculations on the complexes between noble gas atoms (He, Ne, Ar, Kr, and Xe) and dihalogen molecules (F2, Cl2, Br2, and I2) reveal trends, both in interaction energies and the energy difference between the linear and T-shaped structures, that can be explained well in terms of dispersion interactions enhanced by polar flattening of the halogens. The partial discrepancies with experimental findings are discussed.
Graphical abstract The molecular electrostatic potential (red positive, blue negative) of Cl2...Br2 projected onto the 0.003 a.u. isodensity surface.
  相似文献   

9.
The electric dipole transitions between pure spin and mixed spin electronic states are calculated at the XMC-QDPT2 and MCSCF levels of theory, respectively, for different intermolecular distances of the C6H6 and O2 collisional complex. The magnetic dipole transition moment between the mixed-spin ground (“triplet”) and the first excited (“singlet”) states is calculated by quadratic response at MCSCF level of theory. The obtained results confirm the theory of intensity borrowing and increasing the intensity of electronic transitions in the C6H6?+?O2 collision. The calculation of magnetically induced current density is performed for benzene molecule being in contact with O2 at the distances from 3.5 to 4.5 Å. The calculation shows that the aromaticity of benzene is rising due to the conjugation of π-MOs of both molecules. The C6H6?+?O2 complex becomes nonaromatic at the short distances (r?<?3.5 Å). The computation of static polarizability in the excited electronic states of the C6H6?+?O2 collisional complex at various distances supports the theory of red solvatochromic shift of the a?→?X band.
Graphical abstract The C6H6+ O2 collisional complex
  相似文献   

10.
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391–5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100–200 pN range, consistent with published experimental estimates.
Graphical Abstract A single surface-mounted switchable rotaxane
  相似文献   

11.
Second group metal dimers can replace the carbon atom in benzene to form metallabenzene (C5H6M2) compounds. These complexes possess some aromatic character and promising hydrogen adsorption properties. In this study, we investigated the aromatic character of these compounds using aromaticity indices and molecular orbital analysis. To determine the nature of interactions between hydrogen and the metallic center, variation-perturbational decomposition of interaction energy was applied together with ETS-NOCV analysis. The results obtained suggest that the aromatic character comes from three π orbitals located mainly on the C5H5 ? fragment. The high hydrogen adsorption energy (up to 6.5 kcal mol?1) results from two types of interaction. In C5H6Be2, adsorption is controlled by interactions between the empty metal orbital and the σ orbital of the hydrogen molecule (Kubas interaction) together with corresponding back-donation interactions. Other C5H6M2 compounds adsorb H2 due to Kubas interactions enhanced by H2–π interactions.
Graphical Abstract First π orbital in C5H6Be2
  相似文献   

12.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

13.
Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]
  相似文献   

14.
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors.
Graphical abstract Bennett’s acceptance ratio (BAR) method
  相似文献   

15.
A topological analysis based on density functional electronic and spin densities of the bonding characteristics in a series of Fe, Ru, Os, Tc and Rh dimers and trimers bridged, respectively, by μ-1,8-naphthyridine (nap) and μ-2,2′-dipyridylamine (dpa) is presented. By this simple qualitative analysis, we were able to determine the electronic ground state and correlated bonding order for a number of complexes potentially involved in extended metal atom chains (EMAC). Furthermore, we showed in the Ru dimer that it was possible to control the spin state simply by changing the bonded counter-anion.
Graphical Abstract Electron localization analysis of the bonding properties in [M2(nap)4Cl2]2+ and [M3(dpa)4(Cl2] complexes
  相似文献   

16.
In this paper, we perform the synthesization of carbon nanoparticles for active principle vectorization, with the suggestion of a reaction mechanism of tryptophan methyl ester addition on [60]fullerene. Firstly, we studied the effect of tryptophan form on its addition reaction on [60]fullerene. So, in order to determine the preferred environment that makes this reaction the most favorable, we considered all tryptophan possible forms in our investigation: the molecular, the zwitterionic, and the dibasic forms. Secondly, we investigate the proposed reaction mechanism of tryptophan methyl ester addition on [60]fullerene using theoretical thermodynamic calculation. Our hypothesis suggests the formation of azomethine ylide molecule in a first step followed by its addition on [60]fullerene in the second step by the photo-addition reaction involving the oxygen in its singlet state. The stability of each reactive intermediate involved in this mechanism is verified thermodynamically. The 12 most stable conformations of azomethine ylide were observed through potential energy surface analysis. They were obtained by a relaxed scan of the four dihedral angles. The calculations were conducted on the optimized geometry of fulleropyrrolidine mono-adduct and the bulk values of its thermodynamic constants were also determined. Infrared spectra observed in 100–4000 cm?1 region confirmed our hypothesis suggesting the first step of azomethine ylide formation followed by the second step of azomethine ylide addition on [60]fullerene by ν(Caliphatic-C-N), ν(Caromatic-C-N) and δ(N-H) coupled with ν(C-N) absorption bond.
Graphical abstract Optimized geometry of the Fulleropyrrolidine monoaduct molecule.
  相似文献   

17.
Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C6(CH3)62+, in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C7H7)3+, in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C8H8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage.
Graphical abstract Possible structural transformations of stable configurations of (C7H7)3+, which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.
  相似文献   

18.
19.
For the first time, the structures, stabilities and electronic properties of alkaline-earth metal doped B44 fullerenes were investigated by means of density functional theory calculations. Our results reveal that M@B44 (M = Ca, Sr, Ba) possess endohedral configurations as their lowest energy structures, whereas the exohedral form is favored when metal is Be or Mg. The large binding energies and sizable HOMO–LUMO gap energies of Ca@B44, Sr@B44 and Ba@B44 suggest the considerable possibility to achieve these novel endohedral borofullerenes experimentally. Born-Oppenheimer molecular dynamics (BO-MD) simulations at various temperatures further confirmed the extreme dynamic stabilities of these endohedral complexes. Their bonding patterns were also analyzed in detail. Finally, we simulated their infrared absorption spectra and 11B nuclear magnetic resonance spectra to help future structural characterization.
Graphical Abstract Stuffing B44 fullerene with metals
  相似文献   

20.
The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO2) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO2, while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O–H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials.
Graphical abstract The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO2) has been investigated under the scheme of density functional theory.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号