首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particles formed by the bacteriophage MS2 coat protein mutants with insertions in their surface loops induce a strong immune response against the inserted epitopes. The covalent dimers created by fusion of two copies of the coat protein gene are more tolerant to various insertions into the surface loops than the single subunits. We determined a 4.7‐Å resolution crystal structure of an icosahedral particle assembled from covalent dimers and compared its stability with wild‐type virions. The structure resembled the wild‐type virion except for the intersubunit linker regions. The covalent dimer orientation was random with respect to both icosahedral twofold and quasi‐twofold symmetry axes. A fraction of the particles was unstable in phosphate buffer because of assembly defects. Our results provide a structural background for design of modified covalent coat protein dimer subunits for use in immunization.  相似文献   

2.
Small-angle neutron scattering experiments have been performed on the tubular bottom component of Alfalfa mosaic virus (AMV) and the “30 S” particle (a quasispherical reassembled AMV coat protein particle) with the aim of determining the internal structure of the virus. Scattering curves were obtained out to a resolution of 150A??1 at a number of H2O/2H2O ratios and were analysed using a model fitting technique. This involves calculating the scattering intensity due to a parameterised distribution of scattering density representing the particle and comparing this to the experimental data after taking into account the effect of instrumental smearing. The use of the contrast variation method enables the internal consistency of the model to be well tested.Three models are used in an attempt to explain the scattering curve of the 30 S particle. A single homogeneous shell is shown to be inadequate and two other models introducing the presumed T = 1 icosahedral symmetry of the particle are presented and discussed. The most satisfactory of these consists of 60 spherical monomers of radius 19 Å symmetrically placed in pairs about the 2-fold icosahedral positions.The analysis of the bottom component data has yielded a low resolution model for the virus, which is shown to be consistent with its composition as given by earlier physico-chemical measurements. In the model the RNA is uniformly packed throughout the interior of the capsid (which is cylindrical with hemispherical ends) out to a radius of about 65 Å and with a packing fraction of 20%. Within the limitations of an homogeneous shell model, the protein capsid has an outer radius of 94 Å and thickness of 23 Å, but arguments are presented based on the marked lattice structure of the cylindrical capsid and the analysis of the scattering data of the 30 S particle, that this model underestimates the thickness of the protein shell and that it in fact makes contact with the RNA at about 65 Å.  相似文献   

3.
Sedimentation coefficients and apparent molecular masses of 5.8S rRNA from rat liver and yeast (Saccharomyces cerevisiae) depend considerably on the ionic strength and the kind of ions in solution. At 20°C the sedimentation coefficient of 5.8S rRNA in 10 mm sodium cacodylate, pH 7.0, amounts to 5.1 ± 0.2 S. By addition of NaCl up to 1.1 m the data increase reversibly to 6.1 ± 0.2 S (rat liver) or 5.4 ± 0.1 S (yeast) without significant changes of the molar mass (52 000 ± 2000) g/mol. Similar effects but with different extent were obtained using KCl or LiCl. These results can be explained by counterion effects on the conformation and changing of the water shell surrounding the RNA molecule. Short heat incubation (5 min at 65°C) and immediate cooling of rat liver 5.8S rRNA lead to dimer or oligomer formation. Its portions depend strongly on RNA concentration and are enhanced also with increasing NaCl concentration and incubation temperature as can be seen fro higher sedimentation coefficients and molecular masses as well as from additional bands in the electrophoretic pattern. At 20°C MgCl2 provokes, in concentrations up to 1.5 mm, a reversible increase of sedimentation coefficients of rat liver 5.8S rRNA to 6.65 ± 0.1 S whereas the molecular mass remains unchanged indicating strong Mg++ effects on conformation and/or water shell of the 5.8S rRNA. A further increase of sedimentation coefficients up to 8.2 ± 0.1 S combined with higher apparent molar masses up to 90 000 g/mol was observed in the presence of 30 to 50 mm MgCl2. In this concentration range of Mg++ the association constants of 5.8S rRNA dimerization increase from about 105to 3 × 107m?1. After removal of free Mg++ by addition of EDTA the 5.8S rRNA dimers dissociate if no incubation step at higher temperature in involved. The Mg++ induced 5.8S rRNA dimers differ in their stability from those formed by incubation at 65°C in the presence of higher concentrations of monovalent ions.  相似文献   

4.
The self-assembly of collagen molecules   总被引:2,自引:0,他引:2  
L Yuan  A Veis 《Biopolymers》1973,12(6):1437-1444
The aggregation of native acid-soluble collagen (N-ASC) and of pronase-treated acid soluble collagen (P-ASC) was examined in solution under conditions which varied from those of minimum collagen-collagen interaction to those leading to incipient fiber formation. Molecular weights and weight distributions were determined in the analytical ultracentrifuge using the Yphantis high speed sedimentation equilibrium and Aarchiblad approach-to-equilibrim techniques. The aggregation was pH and ionic strength dependent in each case. Under conditions of minimum aggregation (low pH, low ionic strength), N-ASC showed the presence of permant aggregates. At higher pH and ionic strength, a higher fraction of aggregate was formed but these were of the same charcter and molecular weight as the permanent aggregates. The aggregates were of a single molecular size, with a weight of 1.5 × 106 daltons, compared with a monomer collagen weight of 3.1 × 105 daltons. The P-ASC formed aggregates also but to a much lower extent and the maximum aggregate size corresponded to dimers in molecular weight. These data show the major importance of molecular end-regions in collagen aggregation to form native type fibers and, by virtue of the discrete size of the N-ASC aggregates, support the microfibrillar hypothesis for the assembly of collagen fibrills.  相似文献   

5.
6.
The states of aggregation of alfalfa mosaic virus (AMV) protein have been characterized by sedimentation velocity experiments and electron microscopy. The main association product is a spherical particle with an s value of about 30S. It is highly likely that the assembly of this particle starts with dimers of the 25000 molecular mass unit resulting in an icosahedral particle made of 30 dimers. No intermediate aggregation products have been detected. The clustering pattern of the protein in the cylindrical part of the AMV capsid favours the concept of dimers as the active assembling units.  相似文献   

7.
This paper reports physical-chemical properties of proteins L7 and L12 from E. coli 50 S subunits. Evidence is presented that these two proteins behave in their native state as a dimer of molecular weight 24000. From sedimentation velocity and intrinsic viscosity data the actual frictional ratio of the dimer has been obtained revealing an asymmetric particle which can be described as a rod with cell dimensions of L = 130 Å and a diameter of D = 17.0 Å. From small X-ray scattering the radius of gyration (Rg = 37.0 Å), the thickness factor, and the degree of hydration were determined. This indicates that the extended shape of the dimer is due to the asymmetry of the molecule and not to the hydration.  相似文献   

8.
The dexamethasone-binding receptor protein in rat liver cytosol has a Stokes radius of 61 Å and a sedimentation coefficient of 4.0 S. In contrast, cell nuclei labelled with [3H]dexamethasone in vivo or in vitro (reconstitution experiments with [3H]dexamethasone-labelled cytosol and isolated unlabelled nuclei) contain a high-salt-extractable dexamethasone-receptor complex with a Stokes radius of 30–36 Å and a sedimentation coefficient of 3.2 S. Exposure of liver homogenate or 1000 × g homogenate supernatant to low ionic strenght during preparation of cytosol resulted in conversion of the 61 Å to a 36 Å complex very similar to the intranuclear form of dexamethasone receptor. 61 → 36 Å complex-verting activity was present in both the 100 × g ?10 000 × g sediment of liver homogenate, from which it could be extracted by hypotonic media, and in the liver cell nuclei, from which it could be extracted by hypertonic media. Mild digestion of the 61 Å dexamethasone-receptor complex with trypsin also gave rise to a complex with a Stokes radius of 36 Å. Reconstitution experiments with isolated liver cell nuclei indicated that both the 61 Å and 36 Å dexamethasone-receptor complexes were taken up by the nuclei; reextraction of the nuclei incubated with the 61 Å complex revealed that this form had been converted to the 30–36 Å complex.Further digestion of teh 61 and 36 Å [3H]dexamethasone-receptor complexes with hypotonic extract of the 1000 × g ?10 000 × g sediment of liver homogenate or with trypsin resulted in formation of a third complex with a Stokes radius of 19 Å and a sedimentation coefficient of 2.5 S. The approximate molecular weights of the 61, 36 and 19 Å dexamethasone-receptor complexes were calculated as 102 000, 46 00 and 19 000, respectively, and the frictional ratios of the molecules as 1. 84, 1. 38 amd 1.00, respectively.It is concluded that the nuclear 30–36 Å dexamethasone-receptor complex is formed from the cytosol 61 Å complex by proteolytic digestion and that this latter protein contains at least two sites with a relatively high sensitivity to protelytic cleavage.  相似文献   

9.
Different conformations have been identified for the enzyme valyl-tRNA synthetase from yeast inside its complex with one tRNA molecule by neutron scattering. One form is identical to that of the free enzyme in solution; the other form is more contracted, having a radius of gyration which is smaller by 10% and a specific volume which is smaller by 1%. The contracted conformation has been found for the complexes with tRNAVal and tRNAAsp in phosphate buffer (pH 6.3) provided the ionic strength is lower than about 150 mm. In higher ionic strength (up to about 500 mm) the enzyme still forms a complex with tRNAVal but its conformation remains that of the free protein in solution. In the complex with tRNA3Leu, the enzyme conformation is that of the free state even at the lowest ionic strength examined (that of the phosphate buffer, 60 mm). The free enzyme is an elongated molecule of radius of gyration 40 Å (a compact protein of the same molecular weight would have a radius of gyration of 30 Å).The positioning within the complex of tRNAVal, on the one hand, and tRNA3Leu, on the other, is very different. The first tRNA is intimately associated with the enzyme, lying predominantly closer to the centre of mass of the complex than the protein. In the complex with tRNA3Leu, the tRNA lies further away from the centre of mass of the complex than the protein.Small concentrations of tRNAVal, tRNAAsp, tRNA3Leu or Escherichia coli 5 S ribosomal RNA cause the enzyme to aggregate into dimers, trimers and higher aggregates provided the ionic strength of the buffer is below 150 mm. In higher ionic strength or for [RNA]: [enzyme] > 1 the aggregates are dissociated to yield the one-to-one RNA-enzyme complex.  相似文献   

10.
Disruption of the coat of coated vesicles is accompanied by the release of clathrin and other proteins in soluble form. The ability of solubilized coated vesicle proteins to reassemble into empty coats is influenced by Mg2+, Tris ion concentration, pH, and ionic strength. The proteins solubilized by 2 M urea spontaneously reassemble into empty coats following dialysis into isolation buffer (0.1 M MES–1 mM EGTA–1 mM MgCl2–0.02% NaN3, pH 6.8). Such reassembled coats have sedimentation properties similar to untreated coated vesicles. Clathrin is the predominant protein of reassembled coats; most of the other proteins present in native coated vesicles are absent. We have found that Mg2+ is important in the coat assembly reaction. At pH 8 in 0.01 M or 0.1 M Tris, coats dissociate; however, 10 mM MgCl2 prevents dissociation. If the coats are first dissociated at pH 8 and then the MgCl2 raised to 10 mM, reassembly occurs. These results suggest that Mg2+ stabilizes the coat lattice and promotes reassembly. This hypothesis is supported by our observations that increasing Mg2+ (10 μM–10 mM) increases reassembly whereas chelation of Mg2+ by (EGTA) inhibits reassembly. Coats reassembled in low-Tris (0.01 M, pH 8) supernatants containing 10 mM MgCl2 do not sediment, but upon dialysis into isolation buffer (pH 6.8), these coats become sedimentable. Nonsedimentable coats are noted also either when partially purified clathrin (peak I from Sepharose CL4B columns) is dialyzed into low-ionic-strength buffer or when peaks I and II are dialyzed into isolation buffer. Such nonsedimentable coats may represent intermediates in the assembly reaction which have normal morphology but lack some of the physical properties of native coats. We present a model suggesting that tightly intertwined antiparallel clathrin dimers form the edges of the coat lattice.  相似文献   

11.
Effects of pH, ionic strength, kind of salts and disulfide bond cleaving agent (2-mercaptoethanol) on conformation changes revealed on ultracentrifugal patterns of a 7S protein in soybean globulins were investigated. In the solution with lower pH than isoelectric point, this protein dissociated into two components in low ionic strength, but showed a 7S sedimentation pattern in higher ionic strength than 0.1. On the other hand, in the solution with higher pH than isoelectric point, this protoin showed aggregation to a 9S isomer in lower ionic strength than 0.1. Between ionic strength of 0.1 and 0.5, the mixture of 7S and 9S forms existed and in higher ionic strength than 0.5, the protein kept a 7S form stablely. These reactions were reversible and effect of 2-mercaptoethanol was scarcely observed but those of salts were observed.

The molecular weight of the 9S isomer was approximately 370,000 and the s20,w value was 12.30S. Therefore, the 9S isomer was considered to be a dimer of the 7S protein.  相似文献   

12.
DNA polymerase isolated from the cytoplasm is an aggregate enzyme which can exist in forms of dimers, trimers and tetramers of a monomer of 54,000 molecular weight. Trimers and tetramers could be quantitatively converted into dimers and monomers by sedimentation in sucrose gradients at high ionic strength (0.45 m). Molecular properties of the monomer resembled nuclear DNA polymerase: sedimentation coefficient (3.5 S), template specificity and resistance to inhibition by N-ethylmaleimide and heparin.  相似文献   

13.
Two distinct partitiviruses, Penicillium stoloniferum viruses S and F, can be isolated from the fungus Penicillium stoloniferum. The bisegmented dsRNA genomes of these viruses are separately packaged in icosahedral capsids containing 120 coat-protein subunits. We used transmission electron cryomicroscopy and three-dimensional image reconstruction to determine the structure of Penicillium stoloniferum virus S at 7.3 A resolution. The capsid, approximately 350 A in outer diameter, contains 12 pentons, each of which is topped by five arched protrusions. Each of these protrusions is, in turn, formed by a quasisymmetric dimer of coat protein, for a total of 60 such dimers per particle. The density map shows numerous tubular features, characteristic of alpha helices and consistent with secondary structure predictions for the coat protein. This three-dimensional structure of a virus from the family Partitiviridae exhibits both similarities to and differences from the so-called "T = 2" capsids of other dsRNA viruses.  相似文献   

14.
The structure of the Leviviridae bacteriophage φCb5 virus-like particle has been determined at 2.9 Å resolution and the structure of the native bacteriophage φCb5 at 3.6 Å. The structures of the coat protein shell appear to be identical, while differences are found in the organization of the density corresponding to the RNA. The capsid is built of coat protein dimers and in shape corresponds to a truncated icosahedron with T = 3 quasi-symmetry. The capsid is stabilized by four calcium ions per icosahedral asymmetric unit. One is located at the symmetry axis relating the quasi-3-fold related subunits and is part of an elaborate network of hydrogen bonds stabilizing the interface. The remaining calcium ions stabilize the contacts within the coat protein dimer. The stability of the φCb5 particles decreases when calcium ions are chelated with EDTA. In contrast to other leviviruses, φCb5 particles are destabilized in solution with elevated salt concentration. The model of the φCb5 capsid provides an explanation of the salt-induced destabilization of φCb5, since hydrogen bonds, salt bridges and calcium ions have important roles in the intersubunit interactions.Electron density of three putative RNA nucleotides per icosahedral asymmetric unit has been observed in the φCb5 structure. The nucleotides mediate contacts between the two subunits forming a dimer and a third subunit in another dimer. We suggest a model for φCb5 capsid assembly in which addition of coat protein dimers to the forming capsid is facilitated by interaction with the RNA genome. The φCb5 structure is the first example in the levivirus family that provides insight into the mechanism by which the genome-coat protein interaction may accelerate the capsid assembly and increase capsid stability.  相似文献   

15.
We have examined the structure of actin-binding molecules in solution and interacting with actin filaments. At physiological ionic strength, actin-binding protein has a Mr value of 540 × 103 as determined by direct and indirect hydrodynamic measurements. It is an asymmetrical dimer composed of 270 × 103 dalton subunits. Viewed in the electron microscope after negative staining or low angle shadowing, actin-binding protein molecules assume a broad range of conformations varying from closed circular structures to fully extended strands 162 nm in contour length. All configurations are apparently derived from the same structure which consists of two monomer chains connected end-to-end. The radius of gyration determined from the electron microscopic images was 21.3 nm in agreement with the value of 17.6 nm calculated from hydrodynamic assays. The average axial ratio from hydrodynamic measurements was 17:1, whereas fully extended dimer molecules in the electron microscope would have an axial ratio of 54:1. All of these observations indicate that actin-binding protein dimers are extremely flexible. The flexibility parameter λ (Landau &; Lifshits, 1958) for actinbinding protein is 0.18 nm?1.As determined by sedimentation, actin-binding protein binds to actin filaments with a Ka value of 2 × 106m?1 and a capacity of one dimer to 14 actin monomers in filaments. After incubation of high concentrations (molar ratio to actin ≥ 1:10) of actin-binding protein with actin filaments, long filament bundles are visible in the electron microscope. Under these conditions, actin-binding protein molecules decorate the actin filaments in the bundles at regular 40 nm intervals or once every 15 monomers, approximately equivalent to the binding capacity measured by sedimentation. Low concentrations of actin-binding protein (molar ratio to actin ≥ 1:50) which promote the gelation of actin filaments in solution, did not detectably alter the isotropy of the actin filaments. Direct visualization of actinbinding protein molecules between actin filaments in the electron microscope showed that dimers are sufficient for crossbridging of actin filaments and that actinbinding protein dimers are bipolar, composed of monomers connected head-to-head and having actin-binding sites located on the free tails.We conclude that actin-binding protein is a dimer at physiological ionic strength. Each dimer has two actin filament binding sites and is therefore sufficient to gel actin filaments in solution. The length and flexibility of the actin-binding protein subunits render this molecule structurally suited for the crosslinking of large helical filaments into isotropic networks.  相似文献   

16.
Small-angle x-ray and neutron scattering were used to study the structure of the ribosomal protein S1 (61 kDa) from Thermus thermophilus in solution at low and moderate ionic strength (0 and 100 mM NaCl). The protein was found to be globular in both cases. Modeling of the S1 structure comprising six homologous domains on the basis of the NMR data for one domain showed that the best fit to scattering data was provided by compact domain packing. The calculated gyration radius was 28–29 Å, as typical of globular proteins about 60 kDa. The protein was prone to self-association, forming mainly dimers and trimers at moderate ionic strength and higher compact associates at low ionic strength. Neutron scattering assays in heavy water at 100 mM NaCl revealed markedly elongated associates. The translational diffusion coefficient calculated for S1 at 100 mM NaCl from dynamic light scattering was markedly lower than the one expected for its globular monomer (D 20,w = (2.7 ± 0.1)·10?7 versus (5.8–6.0)·10?7 cm2 s?1), confirming protein association under equilibrium conditions.  相似文献   

17.
Dissociation of turnip crinkle virus (TCV) at elevated pH and ionic strength produces free dimers of the coat protein and a ribonucleoprotein complex that contains the viral RNA, six coat-protein subunits, and the minor protein species, p80 (a covalently linked coat-protein dimer). This "rp-complex" is stable for several days in high salt at pH 8.5. Reassembly of TCV can be accomplished under physiological conditions, using isolated coat protein and either rp-complex or protein-free RNA. If rp-complex is used in reassembly, the same subunits remain bound to RNA on subsequent dissociation; if free RNA is used, rp-complex is regenerated. In both cases, the assembly is selective for viral RNA in competition experiments with heterologous RNA. Electron microscopy shows that assembly proceeds by continuous growth of a shell from an initiating structure, rather than by formation of distinct intermediates. We suggest that rp-complex is the initiating structure, suggest a model based on the organization of the TCV particle, and propose a mechanism for TCV assembly.  相似文献   

18.
The pH and ionic strength dependence of the states of aggregation of brome mosaic virus protein has been investigated by small angle neutron scattering, quasielastic light-scattering, analytical centrifugation and electron microscopy. At pH above neutrality, protein oligomers are found in dynamical equilibrium, comprising monomers, dimers and aggregates of higher molecular weight. By lowering the pH. capsids assemble spontaneously with dimensions in solution which depend on ionic strength. If formed by dialysis, they contain 180 monomers, but are 30 Å larger in diameter than the native virus. If formed by pH-jump, they contain less monomers; the deficiency decreases with decreasing the final pH and the initial protein concentration. Upon dehydration for electron microscopy, capsids contract by 10%.  相似文献   

19.
1. The conformation of bovine microtubule protein prepared by cycles of assembly and disassembly in the presence of glycerol has been studied by near-u.v. circular dichroism (c.d.) over a range of protein concentrations. The effects on the conformational properties of ionic strength and of a pH range from 6 to 7.5 have been correlated with the known oligomeric composition of microtubule protein preparations, as determined by the sedimentation behaviour of this preparation [Bayley, Charlwood, Clark & Martin (1982) Eur. J. Biochem. 121, 579–585]. 2. The formation of 30S oligomeric ring species, either by decreasing ionic strength at pH6.5 or by changing pH in the presence of 0.1m-NaCl, correlates with a significant change in tubulin c.d. Formation of 18S oligomer by changing pH at ionic strength 0.2 produced no comparable effect. The c.d. of tubulin dimer itself is not affected by ionic strength and pH over the same range. 3. The results are interpreted as a small conformational adjustment between tubulin and specific microtubule-associated proteins on forming 30S oligomeric species, due to interaction with the high-molecular-weight-group proteins. The possible significance of this is discussed with respect to microtubule assembly in vitro. 4. By using this conformational parameter, together with equilibrium and kinetic light-scattering studies, the sensitivity of glycerol-cycled microtubule protein to dilution is shown to be strongly pH-dependent, the oligomers being much more stable at pH6.4 than at pH6.9. 5. Oligomeric complexes of tubulin with microtubule-associated proteins show marked stability under conditions similar to those for efficient microtubule assembly in vitro. Oligomeric material therefore must be incorporated directly during assembly in vitro from microtubule protein.  相似文献   

20.
M. Rinaudo  M. Mils 《Biopolymers》1978,17(11):2663-2678
The main physicochemical properties of the polysaccharide called Xanthan produced by Xanthomonas compestris are discussed: the activity coefficient of the counter-ion, the pK(α), and the ionic selectivity are investigated and compared to those of a carboxymetholcellulose. The weight-average molecular weight (M w = 2 × 106), the intrinsic viscosity and the constant of sedimentation are determined as a function of the ionic strength. It is proved that in dilute solution, there is no intermolecular association, whatever the ionic strength. The conformation is proposed to be a rigid rodlike molecule whose length is 6000 Å, independent of ionic strength > 10?2N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号