首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Human and mouse amelogenin gene loci are on the sex chromosomes   总被引:19,自引:0,他引:19  
Enamel is the outermost covering of teeth and is the hardest tissue in the vertebrate body. The enamel matrix is composed of enamelin and amelogenin classes of protein. We have determined the chromosomal locations for the human and mouse amelogenin (AMEL) loci using Southern blot analyses of DNA from human, mouse, or somatic cell hybrids by hybridization to a characterized mouse amelogenin cDNA. We have determined that human AMEL sequences are located on the distal short arm of the X chromosome in the p22.1----p22.3 region and near the centromere on the Y chromosome, possibly at the proximal long arm (Yq11) region. These chromosomal assignments are consistent with the hypothesis that perturbation of the amelogenin gene is involved in X-linked types of amelogenesis imperfecta, as well as with the Y-chromosomal locations for genes that participate in regulating tooth size and shape. Unlike the locus in humans, the mouse AMEL locus appears to be assigned solely to the X chromosome. Finally, together with the data on other X and Y chromosome sequences, these data for AMEL mapping support the notion of a pericentric inversion occurring in the human Y chromosome during primate evolution.  相似文献   

3.
A mouse cDNA probe homologous to the human MCF2 transforming sequence has been identified and partially cloned, and is used here to localize the gene on the mouse X chromosome. The human gene has been physically mapped to within 60 kb of the gene for coagulation factor IX, within a large conserved linkage group between the mouse and human genomes which extends from HPRT to G6PD on the X chromosomes of both mammalian species. In situ hybridization of the mouse Mcf-2 probe onto mouse metaphase chromosomes indicates that this gene lies in the same region of the X chromosome as Cf-9, the mouse gene for coagulation factor IX. Moreover, segregation of species-specific genomic DNA polymorphisms for Mcf-2 and Cf-9 in a total of 203 individuals derived from two large interspecific mouse backcross populations (which are also segregating for 17 other X-linked molecular markers) demonstrates that the mouse genes are separated by only 0.5 +/- 0.5 cM. Despite this short distance we were able to order Mcf-2 and Cf-9 relative to one another and other genes in this region. The mouse gene order Hprt-Cf-9-Mcf-2-G6pd predicts a similar ordering of genes on the human X chromosome, a gene order which has only recently been demonstrated by physical mapping. Thus, the map location and linkage relationships of the Mcf-2 gene are similar in man and mouse, and this unique protooncogenic locus is part of a conserved linkage group on the mammalian X chromosome.  相似文献   

4.
L1 is a glycoprotein with an apparent molecular weight of 200 kDa in the developing fetus and adult central nervous system. In the peripheral nervous system, it has a molecular weight of 230 kDa. The L1 protein appears to be encoded by a single gene that has been located on the human X chromosome by in situ hybridization. In this paper we describe restriction variation in genomic DNA Southern analysis between Mus species for the K13 cDNA probe for the L1 neural cell adhesion molecule. We have designated the locus described by this variation as cell adhesion molecule L1, CamL1. The X chromosome linkage and the relative position on the X chromosome coincident with the genes Rsvp/G6pd/Cf-8 were defined in backcross matings involving M. spretus and M. musculus.  相似文献   

5.
The temperature-sensitive ts A1S9 mutation of mouse L cells was previously shown to affect nuclear DNA replication and to be complemented by active and inactive human X chromosomes in human-ts A1S9 somatic cell hybrids. We report the isolation of cDNA clones which correct the ts A1S9 lesion, using as a probe a genomic fragment derived from the human A1S9 locus. The nucleotide sequence of the A1S9 cDNA encompasses a single open reading frame of 2409 bp which could encode a heretofore unreported protein of 90 393 daltons. Southern blot hybridization of the A1S9 cDNA probe with DNA from various species revealed homologous sequences in vertebrates but not in yeast. Northern blot analysis of serum-starved, synchronized cells demonstrated that the A1S9 gene was expressed at a relatively low level in quiescent cells and at a higher and constant level throughout the cell cycle. Human cell lines harbouring increasing numbers of inactive X chromosomes (47, XXX, 49, XXXXX) were found to express the A1S9 gene at the same level as control cells (45, X), suggesting that the gene does not escape X chromosome inactivation.  相似文献   

6.
The human gene for cystathionine beta-synthase (CBS), the enzyme deficient in classical homocystinuria, has been assigned to the subtelomeric region of band 21q22.3 by in situ hybridization of a rat cDNA probe to structurally rearranged chromosomes 21. The homologous locus in the mouse (Cbs) was mapped to the proximal half of mouse chromosome 17 by Southern analysis of Chinese hamster X mouse somatic cell hybrid DNA. Thus, CBS/Cbs and the gene for alpha A-crystalline (CRYA1/Crya-1 or Acry-1) form a conserved linkage group on human (HSA) chromosome region 21q22.3 and mouse (MMU) chromosome 17 region A-C. Features of Down syndrome (DS) caused by three copies of these genes should not be present in mice trisomic for MMU 16 that have been proposed as animal models for DS. Mice partially trisomic for MMU 16 or MMU 17 should allow gene-specific dissection of the trisomy 21 phenotype.  相似文献   

7.
Structure and expression of the bovine amelogenin gene   总被引:4,自引:0,他引:4  
  相似文献   

8.
Thyroxine-binding globulin (TBG) is the major thyroid-hormone transport protein in the plasma of most vertebrate species. A recombinant phage (lambda cTBG8) containing a cDNA insert of human TBG recently has been described. With the cDNA insert from lambda cTBG8 used as a radiolabeled probe, DNA from a series of somatic-cell hybrids containing deletions of the X chromosome was analyzed by means of blot hybridization. The results indicated that the TBG gene is located in the midportion of the long arm of the X chromosome between bands Xq11 and Xq23. The gene then was mapped to band region Xq21-22 by means of in situ hybridization to metaphase chromosomes. Sequences on the X chromosome that are homologous to the cDNA probe are contained within a single EcoRI restriction fragment of 12.5 kb in human DNA. On the basis of the intensity of the hybridization signal on Southern blots, it was determined that the human TBG cDNA probe used in the present study shares significant homology with hamster and mouse sequences. A single EcoRI restriction fragment was recognized in both hamster (8.0-kb) and mouse (5.1-kb) DNA.  相似文献   

9.
Localization of the rhodopsin gene to the distal half of mouse chromosome 6   总被引:2,自引:0,他引:2  
We have assigned the mouse rhodopsin gene, Rho, to chromosome 6 using DNA from a set of mouse-hamster somatic hybrid cell lines and a partial cDNA clone for mouse opsin. This assignment rules out the direct involvement of the rhodopsin gene in the known mouse mutations that produce retinal degeneration, including retinal degeneration slow (rds, chromosome 17), retinal degeneration (rd, chromosome 5), Purkinje cell degeneration (pcd, chromosome 13), and nervous (nr, chromosome 8). Segregation of Rho-specific DNA fragment differences among 50 animals from an interspecific backcross (C57BL/6J X Mus spretus) X C57BL/6J indicates that the Rho locus is 4.0 +/- 2.8 map units distal to the locus for the proto-oncogene Raf-1 and 18.0 +/- 5.4 map units proximal to the locus for the proto-oncogene Kras-2. Linkage to Raf-1 was confirmed using four sets of recombinant inbred strains. The two loci RAF1 and RHO are also syntenic on human chromosome 3, but on opposite arms.  相似文献   

10.
In pigs, the gene for glucosephosphate isomerase (GPI) is linked to the halothane (HAL) gene which is responsible for malignant hyperthermia (MH). A single copy DNA probe, designated GPI8R, has been isolated from a pig genomic library using a porcine GPI cDNA probe. This probe detects, as was the case for the cDNA probe, a five allele polymorphism in SacI and PvuII digested pig DNA. Family studies show that this polymorphism is linked to the HAL locus and hence can be used in carrier detection. In situ hybridization with GPI8R assigned the GPI locus to bands p12-q22 of chromosome 6. We conclude that the HAL linkage group resides on chromosome 6.  相似文献   

11.
A human DOPA decarboxylase (DDC) cDNA probe of 747 base pairs has been used to map the DDC gene by in situ hybridization on mouse metaphase chromosomes. This result indicates that the gene is located on band 11A, near the erythroblastosis oncogene B (erb b) locus. This provides evidence for a synteny group on mouse chromosome 11 and human chromosome 7.  相似文献   

12.
13.
Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase expressed in immature lymphocytes of the thymus and bone marrow, as well as certain leukemic cells. Chromosomal assignment of the gene coding for human TdT was accomplished by in situ hybridization of a 3H-labeled cDNA probe to human chromosome preparations and by Southern blot analysis of somatic cell hybrid DNAs. The human TdT gene was mapped to the region q23----q24 of chromosome 10. Breaks at this site have been reported in different translocations in human leukemias. The mouse TdT gene was assigned to chromosome 19 by Southern blot analysis of mouse X Chinese hamster somatic cell hybrids. This result adds a fourth locus to the conserved syntenic group on mouse chromosome 19 and human chromosome 10.  相似文献   

14.
Hybridization of DNA samples prepared from flow-sorted human chromosomes with a cDNA probe for the X-linked glucose-6-phosphate dehydrogenase (G6PD) suggested the existence of the G6PD-like locus on chromosome 17. Southern hybridization analysis of endonuclease-digested DNA samples from the human-mouse hybrid cell line with human chromosome 17, and from control human and mouse cells, proved that not only X chromosomes, but also chromosome 17, contain DNA sequences that are hybridizable with the G6PD cDNA probe. The G6PD-like locus on chromosome 17 could be a putative pseudogene or a functional gene for the fetal brain-specific G6PD isozyme or other protein.  相似文献   

15.
Multiple ferritin H subunit sequences are present in the genome of higher vertebrates, but it is not yet known with certainty if more than one is expressed. In this paper, we provide evidence that there is only one functional ferritin H gene in the mouse. We screened a mouse genomic library using a mouse ferritin H cDNA as a probe and characterized five clones. These genomic clones proved to contain three pseudogenes and two allelic forms of a unique functional gene. These two alleles differed by only two point mutations in the promoter and three in the first intron and by a 31-bp insertion in the first intron. They were equally expressed when transiently transfected in HeLa cells. These five genomic clones account for all the bands observed on a Southern blot of mouse genomic DNA hybridized with a ferritin H cDNA, and these bands present a restriction fragment length polymorphism between various representatives of the genus Mus. Using a DNA panel prepared from the backcross progeny (C57BL/6 X Mus spretus)F1 X C57BL/6, we localized the functional ferritin H gene (Fth) in region B of mouse chromosome 19 and established cen-Ly-1-Fth-Pax-2 as the most likely gene order, thus defining a conserved syntenic fragment with human chromosome 11q.  相似文献   

16.
The G protein family of transmembrane signaling molecules includes Gs and Gi, the stimulatory and inhibitory regulators of adenylate cyclase. These and other characterized G proteins are comprised of beta, gamma, and alpha chains, the latter being the most variable among the proteins and thus serving to distinguish them. Previous results (Begin-Heick, N. (1985) J. Biol. Chem. 260, 6187-6193) suggested that the autosomal recessive mouse mutation obese (ob), which results in an abnormal response of adipose tissue to lipolytic hormones, is due to a defect in the gene coding for the alpha chain of Gi. In order to test this hypothesis we used a cloned cDNA probe representing murine Gi alpha mRNA in conjunction with a panel of Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes to map the Gi alpha gene in the mouse. In addition, we used a cDNA probe representing the murine Gs alpha gene to a specific mouse chromosome. Our results indicate that the Gi alpha locus maps to mouse chromosome 9, while Gs alpha is localized to region 2E1-2H3 of mouse chromosome 2. Localization of the Gi alpha gene to chromosome 9 excludes this gene as a site of the ob mutation, since the ob locus maps to chromosome 6. Furthermore, our findings indicate that certain members of the murine G protein alpha gene family have dispersed to different chromosomes since diverging from a common ancestral gene.  相似文献   

17.
18.
Several phosphoglycerate kinase genes were previously detected in the human genome by blot hybridization with a phosphoglycerate kinase cDNA probe. Using subcloned fragments of the cDNA we estimate the presence of four independent phosphoglycerate kinase genes. These genes have been mapped to both the human X chromosome (band q13) and chromosome 6 (p12-21.1) using a panel of human-rodent somatic cell hybrids and by chromosomal in situ hybridization. The genomic distribution of phosphoglycerate kinase sequences is conserved in man and mouse, not only for the X chromosome, but also for linkage to the respective major histocompatibility complexes. Molecular cloning of X-linked phosphoglycerate kinase sequences led to the identification of a novel intronless phosphoglycerate kinase pseudogene which is localized proximal to the active gene on the X chromosome.  相似文献   

19.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

20.
The human gene for histidase (histidine ammonia-lyase; HAL), the enzyme deficient in histidinemia, was assigned to human chromosome 12 by Southern blot analysis of human X mouse somatic cell hybrid DNA. The gene was sublocalized to region 12q22----q24.1 by in situ hybridization, using a human histidase cDNA. The homologous locus in the mouse (Hal) was mapped to region 10C2----D1 by in situ hybridization, using a cell line from a mouse homozygous for a 1.10 Robertsonian translocation. These assignments extend the conserved syntenic region between human chromosome 12 and mouse chromosome 10 that includes the genes for phenylalanine hydroxylase, gamma interferon, peptidase, and citrate synthase. The localization of histidase to mouse chromosome 10 suggests that the histidase regulatory locus (Hsd) and the histidinemia mutation (his), which are both known to be on chromosome 10, may be alleles of the histidase structural gene locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号