首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

Vapour-liquid phase diagrams for pure fluids and mixtures of molecules with Lennard-Jones plus quadrupole-quadrupole interaction potentials were determined by Monte Carlo simulation in the Gibbs ensemble [1]. This is the first reported application of the method to molecular fluids. We have demonstrated that the Gibbs method works reliably for strongly interacting molecular fluids at liquid densities. Pure fluid calculations were performed for reduced quadrupole strengths, Q* = Q/(εσ5)1/2 equal to 1 and √2, typical of molecules like C2H2 and C2H4. It was found that the critical temperature of the quadrupolar fluid increased rapidly with increasing quadrupolar strength, in good agreement with previous computer simulation and theoretical results. A single mixture with components characterized by identical Lennard-Jones parameters and Q*1 = + 1, Q*2 = - 1 was studied at three temperatures. A negative azeotrope was observed at the lowest temperature studied, as seen experimentally in the CO2/C2H2 mixture. The perturbation theory calculations are in good agreement with the simulation results for all properties except coexisting liquid densities. The results illustrate some of the strengths and limitations of perturbation theories based on the Padé approximant for the free energy of polar fluids.  相似文献   

2.
Abstract

Benzodipyrazoles have been previously evaluated for their in vitro CDK2 inhibitory activity. In the current investigation, we identified a six-feature common pharmacophore model (AADDRR.33) which is predicted to be responsible for CDK2 inhibition. An efficient 3D QSAR (r2?=?0.98 and q2?=?0.82) model was also constructed by employing PLS regression analysis. From the molecular docking studies, we examined the binding patterns of compound 7aa with the target protein and also calculated the binding energy using MM-GBSA calculations. Three hydrogen bonds with Lys 33, Glu 81, and Leu 83 are conserved even after 1000?ps run in a molecular dynamics simulation. We identified the slight displacement in bond lengths and the conformational changes occurred during the dynamics. The results also elucidated the protein residue–ligand interaction fractions which clearly explained the involvement of non-H-bond interactions.  相似文献   

3.
Abstract

A new method is proposed for the calculation of intermolecular interactions in Molecular Dynamics simulations of liquids with Td, Oh molecular symmetry. The new algorithm is based on the separation of the pair potential into a short-range and a long-range contribution described by a site-site and a spherical centre-centre potential model respectively using an additional cutoff distance. Test calculations for the Lennard-Jones fluids CCl4 and SF6 show significant savings in CPU time. We compare thermodynamic properties, pair correlation functions and a few dynamic autocorrelation functions obtained with the novel strategy with results of the commonly used algorithm for systems containing 864 molecules. Since no significant differences appear the new algorithm may be suggested as a useful contribution to the area of Molecular Dynamics simulation of liquids with these rather high molecular symmetries.  相似文献   

4.
3-(4-Fluorophenyl)-N-((4-fluorophenyl)sulphonyl)acrylamide (FFSA) is a potential tubulin polymerisation inhibitor. In this article, a theoretical study of the binding between FFSA and tubulin in colchicine site was carried out by molecular docking, molecular dynamics (MD) simulation and binding free energy calculations. The docking calculations preliminarily indicate that there are three possible binding modes 1, 2 and 3; MD simulations and binding free energy calculations identify that binding mode 2 is the most favourable, with the lowest binding free energy of ? 29.54 kcal/mol. Moreover, our valuable results for the binding are as follows: the inhibitor FFSA is suitably located at the colchicine site of tubulin, where it not only interacts with residues Leu248β, Lys254β, Leu255β, Lys352β, Met259β and Val181a by hydrophilic interaction, but also interacts with Val181α and Thr179α by hydrogen bond interaction. These two factors are both essential for FFSA strongly binding to tubulin. These theoretical results help understanding the action mechanism and designing new compounds with higher affinity to tubulin.  相似文献   

5.
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (?113.655 kJ/mol) had better binding compared to Cmp19 (?95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.  相似文献   

6.
BackgroundMolecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.Scope of reviewFirst, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Major conclusionsRecent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.General significanceMD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.  相似文献   

7.
Ren Y  He J  Feng L  Liao X  Jin J  Li Y  Cao Y  Wan J  He H 《Bioorganic & medicinal chemistry》2011,19(24):7501-7506
Pyruvate dehydrogenase multienzyme complex (PDHc) E1 component plays a pivotal role in cellular metabolism to convert the product of glycolysis (pyruvate) to acetyl-CoA, and has been reported as a potential target for anti-microbial and herbicide. In present study, based on the thiamin diphosphate (ThDP) site, four novel hit compounds with high inhibitory activity against the PDHc-E1 from Escherichia coli were firstly designed by using structure-based molecular docking methods. As expected, among four compounds, the compound 3a is the best inhibitor by far, with IC50 value of 6.88 μM against PDHc-E1 from E. coli. To elucidate the interaction mechanism between the active site of PDHc-E1 and its inhibitor, the docking-based molecular dynamics simulation (MD) and MD-based ab initio fragment molecular orbital (FMO) calculations were also further performed. The positive results indicated that all modeling strategies presented in the current study most like to be an encouraging way in design of novel lead compounds with structural diversity for PDHc-E1 in the future.  相似文献   

8.
Abstract

We have re-calculated the self part of the density autocorrelation function Fs(k, t) (incoherent scattering function) for the binary soft-sphere fluid with a much longer molecular-dynamics (MD) simulation than our previous MD calculations, and with a larger system size (N = 4000) to a longer time window as well as to study a system-size dependence, if it exists. The full density autocorrelation function F(k, t) was also computed. It is found that all F(k, t)'s that we have computed in this work can be fitted over a wide range of time steps (at least over three figures of the decay) by a Williams-Watts stretched exponential function Fs(k, t) = A exp [— (t/t 0)β], where A, β and t 0 are adjustable parameters. Other significant dynamical behaviours were also presented in mean square displacements and non-Gaussian parameters for highly supercooled fluids with N = 4000. The present results are compatible to our previous computations with N = 500, but a significant size dependence is suggested.  相似文献   

9.
The present paper describes the synthesis, biological evaluation and molecular simulation studies of a series of N-(4-hydroxyphenyl)-3,4,5-trimethoxybenzamide derivatives with N,N-dialkylaminoethoxy/propoxy moiety as potential memory enhancers with acetylcholinesterase-inhibiting activity having IC50 in low micromolar range (4.0–16.5 μM). All the compounds showed a good degree of agreement between in vivo and in vitro results as most of these derivatives showed dose-dependent increase in percent retention. Compound 10a showed significant % retention of 84.73 ± 4.51 as compared to piracetam (46.88 ± 5.42) at 3 mg kg?1 and also exhibited a maximal percent inhibition of 97% at 50 μM. Molecular docking, MM-GBSA and molecular simulation studies were performed establishing a correlation between the experimental biology and in silico results. In silico results indicate that all the compounds have better docking scores and predicted binding free energies as compared to cocrystallized ligand with the best potent ligand retaining conserved hydrophobic interactions with residues of catalytic triad (HIS447), catalytic anionic site (CAS) (TRP86, TYR337, PHE338) and peripheral anionic site (PAS) (TYR72, TYR124, TRP286 and TYR341). Root mean square deviation (RMSD = 2.4 Å) and root mean square fluctuations of 10a–AChE complex during simulation proved its stable nature in binding toward acetylcholinesterase. The docked conformation of 10a and other analogs at the binding site have also been simulated with polar and nonpolar interactions interlining the gorge residues from PAS to catalytic triad.  相似文献   

10.
Abstract

We studied dynamic scaling law for the early stage domain growth in the micelle aggregation process of dispersed surfactant molecules in water for zwitterionic dodecyldimethylamine oxide (DDAO) and cationic dodecyltrimethylammonium chloride (DTAC) based on all-atomistic molecular dynamics calculations. For both surfactants, the aggregation number N increases in proportion to tα′, where t and α′ are the simulation time and exponent of the dynamic scaling, respectively. When the aggregation is controlled by diffusion, it follows the well-known Lifshitz–Slyozov (LS) law giving the exponent α′ = 1. The values of α′ obtained for DDAO and DTAC are 0.6 and 0.3, respectively, indicating that the aggregation rate is suppressed compared with purely diffusion controlled LS process. The aggregation of DDAO and DTAC may be partly controlled by electrostatic interaction between the aggregates.  相似文献   

11.
Abstract

Pressure and self-diffusion calculations for a model fluid system of parallel hard cubes are reported. When viewed alongside equations of state incorporating the known coefficients in the virial expansion (b 2 to b 7), a weak phase change is postulated around 1/4 close-packing. Changes in behaviour are also seen at the same density for the self-diffusion coefficient and an associated single-particle free volume. It is conjectured that a transition may be identifiable with the low-density percolation transition that occurs in all hard-core fluids when the single particle configurational volume becomes extensive. If the hard-sphere model were to behave similarly, the observations may have implications for the general development of liquid-state theory.  相似文献   

12.
13.
Abstract

The molecular dynamics technique can be viewed as a deterministic mathematical mapping between, on one side, the force field parameters that describe the potential energy interactions and the input macroscopic conditions, and, on the other, the calculated macroscopic properties of the bulk molecular system.

The differentiability of such a mapping in the conventional molecular dynamics calculations is affected by the discontinuities in particle positions introduced by the periodic boundary conditions and the discontinuities introduced by the minimum image convention and other methods commonly employed to approximate the calculation of interparticle potential and force.

This paper proposes an alternative molecular dynamics framework based on modified force functions which are almost everywhere continuous and differentiable, and exhibit a natural periodicity. These characteristics obviate the need for both the periodic boundary conditions and the minimum image convention, as well as for any corrections for long-range interactions. They also make it possible to apply standard methods of variational calculus for the computation of partial derivatives of the molecular dynamics mapping.

The modified framework is first introduced for the case of simple monoatomic fluids where the nature of the forces exerted between any pair of two particles is identical. A more general model describing the interactions of flexible molecules is then developed. We describe the application of this approach to mixtures of alkane molecules interacting via the NERD force field.  相似文献   

14.
Abstract

The empirical conformational energy program for peptides (ECEPP2) and molecular mechanics (MM2) have been used for the simulation of the For-Gly-NH2 backbone. I propose two different methods for the calculation of the polarization energy term: the polarization procedure by non-interacting induced dipoles (NID) which assumes scalar isotropic point polarizabilities and the polarization scheme by interacting induced dipoles (ID) which calculates tensor effective anisotropic point polarizabilities (method of Applequist). I present a comparative study of ECEPP2 and MM2 + polarization. I discuss molecular mechanics results including the total energy differences, partitional analyses of the total steric energies and torsion dihedral angles. The γ global and the α, β and Δ local minima are stabilized by intramolecular hydrogen bonds. Although ECEPP2-based calculations rather under or over-estimate the relative energy of some local minima, the ID polarization energy term represents a significant correction to the total relative energy.  相似文献   

15.
The local segmental dynamics of cis-1,4-polybutadiene, polypropylene and polyethylene terephthalate have been investigated via isothermal-isobaric molecular dynamics simulations. The simulation pressure was 1 atm for all systems, with all simulation temperatures being at least 150 K above the polymer's glass transition temperature. The trajectories have been analysed via autocorrelation functions (ACFs) of chord vectors spanning different number of chain backbone bonds. Inverse Laplace transformations of these ACFs using the CONTIN algorithm afforded the corresponding distribution of relaxation times (DRTs) for the simulated dynamics. All DRTs illustrated a peak on fast timescales corresponding to short length scale segmental motion and a peak at longer timescales corresponding to longer length scale relaxations. A third peak, intermediate between the fast and slow processes, appears as the relaxation of chord vectors spanning increasing number of backbone bonds is considered. The temperature dependence of the relaxation dynamics is also investigated.  相似文献   

16.
Abstract

We use classical molecular dynamics simulations to study both the structural modifications through the glass transition and the thermal conductivity k of a model silica glass. The first part is based on the Voronoï tessellation and we show that the structural freezing following upon the glass transition is noticeable in all the geometric characteristics of the Voronoï cells and a possible interpretation in terms of geometrical frustration is proposed.

In the second part we calculate k directly in the simulation box by using the standard equations of heat transport. The calculations have been done between 10 and 1000 Kelvin and the results are in good agreement with the experimental data at temperatures above 20 K. The plateau observed around 10 K can be accounted for by correcting our results taking into account finite size effects in a phenomenological way.  相似文献   

17.
Abstract

The molecular simulation technique of stochastic dynamics (SD) is tested by application to the immunosuppressive drug cyclosporin A (CPA). Two stochastic dynamics simulations are performed, one (SDCCl4 ) with atomic friction coefficients proportional to the viscosity of the nonpolar solvent CCl4, and one (SDH2O) with atomic friction coefficients corresponding to an aqueous solution. The atomic friction coefficients are also taken proportional to an approximate expression for the atomic accessible surface area. The properties of both stochastic dynamics simulations are compared to those of two full molecular dynamics (MD) simulations of cyclosporin A, one in a box with 591 CCl4 molecules, and one in a box with 632 H2O molecules.

The properties of cyclosporin A as found in the molecular dynamics simulation in CCl4 are well reproduced by the SDCCl4 simulation. This indicates that the neglect of a mean force reresenting the average solvent effects on the solute is justified in the case of nonpolar solvents. For polar solvents, like water, this mean force may not be neglected. The SDH2O simulation of cyclosporin A clearly fails to reproduce the amount of hydrogen bonding found in the molecular dynamics stimulation of cyclosporin A in water.

A comparison with a molecular dynamics simulation of cyclosporin A in vacuo shows that both the SDCCl4 and the SDH2O simulation come closer to the properties of the molecular dynamics simulations in CCl4 and in H2O than a molecular dynamics simulation in vacuo.  相似文献   

18.
Abstract

The stacking interactions between a universal base of 3-nitropyrrole (3NP) and four canonical nucleobases were studied by means of ab initio molecular orbital calculations. The stabilities of the complexes are comparable to those of the stacked dimers of canonical bases reported previously. The detailed analysis of the interaction energies revealed the importance of the dipole-dipole interaction included in the Hartree-Fock terms to determine the geometry dependence of the stacking energies. It was also clarified that the dispersion energies included in the electron-correlation terms were essential to obtain adequate stabilities. The contribution of the nitro group was evaluated by the comparative studies of pyrrole and 3NP. The increased molecular dipole moment and surface are expected to account for the enhancement of the stability of the stacked dimers containing 3NP. The force field parameters required for calculation of the molecular mechanics of 3NP were obtained for 3NP on the basis of these molecular orbital calculations. The energy-minimized structures obtained by the molecular mechanics calculations of 3NP accorded with those obtained by the molecular orbital calculations described above. A DNA duplex structure containing 3NP-A, 3NP-T, or 3NP-C was calculated by use of these force field parameters. In the case of 3NP-A, the computationally calculated structure was in good agreement with that previously determined by use of 1H-NMR except for the orientation of the nitro group.  相似文献   

19.
Constant-pressure first-principles molecular dynamics (FPMD) simulation is a powerful tool for investigations of structures in crystals. However, it needs enourmous computations so that highly accurate calculations for electronic states cannot be employed at present. In this report, we examined the reliability and applicability of constant-pressure FPMD in the study of structural properties under this limitation. Crystalline silicon was employed as a benchmark to perform constant-pressure FPMD simulations (with a deformable simulation cell). It is found that, in high pressure (metallic) phases, crystalline symmetry is broken with the present simulation conditions. Several structural transformations were realized by compression and decompression, but they are not entirely consistent with experiment. We discuss this discrepancy and conclude that the number of k point sampling in the Brillouin zone is crucial. It is recommended that constant-pressure FPMD is employed to explore candidate structures for unknown solid phases at present computational resources.  相似文献   

20.
Abstract

A model consisting of ten hydrocarbon species and eight reactions is proposed to describe the gas-phase chemistry of diamond film growth. Based on the model, the gas-phase compositions of the chemical species were computed assuming thermodynamic equilibrium using molecular and transition-state data predicted by ab initio molecular orbital theory, and thermodynamic quantities calculated by statistical mechanics. Although the absolute compositions predicted by the model are in fair agreement with experimental data available in the literature, the model qualitatively accounts for experimentally observed changes in the concentrations of various gas-phase species with increasing addition of methane to the feed gas. The calculations also predict the pattern of temperature variance in the gas-phase close to the substrate with changes in methane concentration in the feed gas, leading to first-principles predictions of favorable conditions for diamond growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号