首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Abstract

Monte Carlo computer simulation is described for the dodecamer d(CGCGAATTCGCG) together with 1777 water molecules at an environmental density of 1 gm/cc in a cubic cell under periodic boundary conditions. Water-water interactions were treated using the TIP4P potential and the solute water interactions by TIP4P spliced with the non-bonded interactions from the AMBER 3.0 force field. The simulation was subjected to proximity analysis to obtain solute coordination numbers and pair interaction energies for each solute atom. Hydration density distributions partitioned into contributions from the major groove side, the minor groove side and the sugar-phosphate backbone were examined, and the probabilities of occurence for one- and two-water bridges in the simulation were enumerated. The results were compared with observations of crystallographic ordered water sites from x-ray diffraction studies on the native dodecamer by Dickerson and coworkers.  相似文献   

2.
Abstract

The behaviour of the popular TIP3P water model has been investigated using both molecular dynamics and Monte Carlo simulation procedures. Long-range electrostatic interactions were included through a reaction-field treatment, and the nonbonded interactions were either truncated at the cutoff distance, or smoothly scaled to zero using a switching function. The thermodynamic observables, and in particular the dipole-dipole correlation functions, are found to differ between the two simulation techniques if a rigid nonbonded cutoff is applied. However, use of a switching function gives exact agreement between the simulation methodologies. This difference is ascribed to the effect of energy pumping in the molecular dynamics simulations, and suggests that dielectric constants calculated using this simulation method with the fluctuation procedure in conjunction with a reaction field should be reappraised. Thus the Monte Carlo simulation procedure offers a number of intrinsic advantages over molecular dynamics for the calculation of dielectric constants with a reaction field. The most precise value for the dielectric constant of TIP3P is calculated to be 102 ± 3 at 298 K.  相似文献   

3.
Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical structure and receptor docking mechanism are still not well understood. The conformational dynamics of this neuron peptide in liquid water are studied here by using all-atom molecular dynamics (MD) and implicit water Langevin dynamics (LD) simulations with AMBER potential functions and the three-site transferable intermolecular potential (TIP3P) model for water. To achieve the same simulation length in physical time, the full MD simulations require 200 times as much CPU time as the implicit water LD simulations. The solvent hydrophobicity and dielectric behavior are treated in the implicit solvent LD simulations by using a macroscopic solvation potential, a single dielectric constant, and atomic friction coefficients computed using the accessible surface area method with the TIP3P model water viscosity as determined here from MD simulations for pure TIP3P water. Both the local and the global dynamics obtained from the implicit solvent LD simulations agree very well with those from the explicit solvent MD simulations. The simulations provide insights into the conformational restrictions that are associated with the bioactivity of the opiate peptide dermorphin for the delta-receptor.  相似文献   

4.
We present a polarizable force field based on the charge-equilibration formalism for molecular dynamics simulations of phospholipid bilayers. We discuss refinement of headgroup dihedral potential parameters to reproduce ab initio conformational energies of dimethylphosphate calculated at the MP2/cc-pVTZ level of theory. We also address the refinement of electrostatic and Lennard-Jones (van der Waals) parameters to reproduce ab initio polarizabilities and water interaction energies of dimethylphosphate and tetramethylammonium. We present results of molecular dynamics simulations of a solvated dimyristoylphosphatidylcholine bilayer using this polarizable force field as well as the nonpolarizable, fixed-charge CHARMM27 and CHARMM27r force fields for comparison. Calculated atomic and electron-density profiles, deuterium order parameters, and headgroup orientations are found to be consistent with previous simulations and with experiment. Polarizable interaction models for solvent and lipid exhibit greater water penetration into the lipid interior; this is due to the variation of water molecular dipole moment from a bulk value of 2.6 Debye to a value of 1.9 Debye in the membrane interior. The reduction in the electrostatic component of the desolvation free-energy penalty allows for greater water density. The surface dipole potential predicted by the polarizable model is 0.95 V compared to the value of 0.8 V based on nonpolarizable force-field calculations. Effects of inclusion of explicit polarization are discussed in relation to water dipole moment and varying charge distributions. Dielectric permittivity profiles for polarizable and nonpolarizable interactions exhibit subtle differences arising from the nature of the individual component parameterizations; for the polarizable force field, we obtain a bulk dielectric permittivity of 79, whereas the nonpolarizable force field plateaus at 97 (the value for pure TIP3P water). In the membrane interior, both models predict unit permittivities, with the polarizable models contributing from one to two more units due to the optical dielectric (high-frequency dipole fluctuations). This contribution is a step toward the continuing development of a CHARMM (Chemistry at Harvard Molecular Mechanics) polarizable force field for simulations of biomacromolecular systems.  相似文献   

5.
Monte Carlo computer simulation is described for the dodecamer d(CGCGAATTCGCG) together with 1777 water molecules at an environmental density of 1 gm/cc in a cubic cell under periodic boundary conditions. Water-water interactions were treated using the TIP4P potential and the solute water interactions by TIP4P spliced with the non-bonded interactions from the AMBER 3.0 force field. The stimulation was subjected to proximity analysis to obtain solute coordination numbers and pair interaction energies for each solute atom. Hydration density distributions partitioned into contributions from the major groove side, the minor groove side and the sugar-phosphate backbone were examined, and the probabilities of occurence for one- and two-water bridges in the simulation were enumerated. The results were compared with observations of crystallographic ordered water sites from x-ray diffraction studies on the native dodecamer by Dickerson and coworkers.  相似文献   

6.
Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement.  相似文献   

7.
To investigate the cooperativity of hydrophobic interactions, the potential of mean force of two- and three-molecule methane clusters in water was determined by molecular dynamics simulations using two methods: umbrella-sampling with the weighted histogram analysis method and thermodynamic integration. Two water models, TIP3P and TIP4P, were used, while each methane molecule was modeled as a united atom. It was found that the three-body potential of mean force is not additive, i.e., it cannot be calculated as a sum of two-body contributions, but requires an additional three-body cooperative term. The cooperative term, which amounts to only about 10% of the total hydrophobic association free energy, was found to increase the strength of hydrophobic association; this finding differs from the results of earlier Monte Carlo studies with the free energy perturbation method of Rank and Baker (1997). As in the work of Rank and Baker, the solvent contribution to the potential of mean force was found to be well approximated by the molecular surface of two methane molecules. Moreover, we also found that the cooperative term is well represented by the difference between the molecular surface of the three-methane cluster and those of all three pairs of methane molecules. In addition, it was found that, while there is a cooperative contribution to the hydrophobic association free energy albeit a small one, the errors associated with the use of pairwise potentials are comparable to or larger than this contribution.  相似文献   

8.
Present knowledge obtained by molecular dynamics (MD) simulation studies regarding the dynamics of water, both in the vicinity of biological membranes and within the proteinaceous water channels, also known as aquaporins (AQPs), is reviewed. A brief general summary of the water models most extensively employed in MD simulations (SPC, SPC/E, TIP3P, TIP4P), indicating their most relevant pros and cons, is likewise provided. Structural considerations of water are also discussed, based on different order parameters, which can be extracted from MD simulations as well as from experiments. Secondly, the behaviour of water in the neighbourhood of membranes by means of molecular dynamics simulations is addressed. Consequently, the comparison with previous experimental evidence is pointed out. In living cells, water is transported across the plasma membrane through the lipid bilayer and the aforementioned AQPs, which motivates this review to focus mostly on MD simulation studies of water within AQPs. Relevant contributions explaining peculiar properties of these channels are discussed, such as selectivity and gating. Water models used in these studies are also summarised. Finally, based on the information presented here, further MD studies are encouraged.  相似文献   

9.
Monte Carlo computer simulation is described for the dinucleotide duplex rGpC together with 562 water molecules at an environmental density of 1 g/cc in a cubic cell under periodic boundary conditions. Water-water interactions were treated using the TIP4P potential and the solute water interactions by TIP4P spliced with the nonbonded interactions from the AMBER 3.0 force field. The simulation was subjected to proximity analysis to obtain solute coordinate numbers and pair interaction energies for each solute atom. Hydration density distributions partitioned into contributions from the major groove side, the minor groove side and the sugar-phosphate backbone were examined, and the probabilities of occurrence for one- and two-water bridges in the simulation were enumerated. The results were compared with observations of crystallographic ordered water sites from x-ray diffraction studies on G and C containing small molecules, and in crystal structure determinations of the sodium, calcium, and ammonium salts of rGpC. The calculated results are generally consistent with the observed sites, except for cytosine N4, where a hydration site is predicted yet none observed in rGpC salts, and for guanine N3, which appears in this calculation to compete unfavorably with the adjacent donor site at guanine N2. There is, however, a significant probability of finding a one-water G-N3-W-G-N2 bridge indicated in the simulation. An explanation for the guanine N3 discrepancy in terms of electrostatic potentials is also offered. The calculated one- and two-water bridges in the rGpC hydration complex coincide in a number of cases to those observed in the ordered water structure of the sodium rGpC crystal hydrate.  相似文献   

10.
Elucidating the relationship between sequence and conformation is essential for the understanding of functions of proteins. While sharing 88 % sequence identity and differing by only seven residues, GA88 and GB88 have completely different structures and serve as ideal systems for investigating the relationship between sequence and function. Benefiting from the continuous advancement of the computational ability of modern computers, molecular dynamics (MD) simulation is now playing an increasingly important role in the study of proteins. However, the reliability of MD simulations is limited by the accuracy of the force fields and solvent model approximations. In this work, several AMBER force fields (AMBER03, AMBER99SB, AMBER12SB, AMBER14SB, AMBER96) and solvent models (TIP3P, IGB5, IGB7, IGB8) have been employed in the simulations of GA88 and GB88. The statistical results from 19 simulations show that GA88 and GB88 both adopt more compact structures than the native structures. GB88 is more stable than GA88 regardless of the force fields and solvent models utilized. Most of the simulations overestimated the salt bridge interaction. The combination of AMBER14SB force field and IGB8 solvent model shows the best overall performance in the simulations of both GA88 and GB88. AMBER03 and AMBER12SB also yield reasonable results but only in the TIP3P explicit solvent model.  相似文献   

11.
Tuan A. Ho 《Molecular simulation》2014,40(14):1190-1200
In this work, different water models (i.e. SPC/E, TIP3P, TIP4P/2005, TIP5P, SPC/Fw, TIP4P/2005f and SWM4_DP) are implemented to simulate water on neutral, negatively charged and positively charged graphene. In all cases ambient conditions are considered. Structural and dynamical properties for water are calculated to quantify the differences among various water models. The results show that SPC/E, TIP4P/2005, SPC/Fw, TIP4P/2005f and SWM4_DP water models yield a similar structure for interfacial water on graphene, whether it is neutral, negatively charged or positively charged. TIP5P is the model whose predictions for the structure of the interface deviate the most from those of the other models. Although qualitatively the results are for the most part similar, a large quantitative variation is observed among the dynamical properties predicted when various water models are implemented. Although experimental data are not available to discriminate the most/least accurate of the model predictions, our results could be useful for comparing results for interfacial water obtained implementing different models. Such critical comparison will benefit practical applications such as the development of energy-storage and water-desalination devices (e.g. electric double-layer capacitors), among others.  相似文献   

12.
The structural stability and preference of a protein are highly sensitive to the environment accommodating it. In this work, the solvation effect on the structure and folding dynamics of a small peptide, NS4B H2, was studied by computer simulation. The native structure of NS4B H2 was solved previously in 50 % v/v water/2,2,2-trifluoroethanol (TFE) mixed solvent. In this work, both pure water and water/TFE cosolvent were utilized. The force field parameters for water were taken from the TIP3P water model, and those for TFE were generated following the routine of the general AMBER force field (GAFF). The simulated structure of NS4B H2 in the mixed solvent is quite in line with experimental data, while in pure water it undergoes a large structural deformation. The generalized Born (GB) model was also investigated by tuning the dielectric constant to match experimental measurements. However, the results show that its performance was less satisfactory. Two independent direct folding simulations of NS4B H2 in explicit water/TFE cosolvent were carried out, both of which resulted in successful folding. Investigation of the distribution of solvent molecules around the peptide indicates that folding is triggered by the aggregation of TFE on the peptide surface.  相似文献   

13.
Abstract

Monte Carlo simulations of water in the NVT ensemble using three models (SPC, TIP4P and TIPS2) are reported. The internal energy, dielectric constant, and the site-site radial distribution functions of liquid water (temperature 300 K and mass density 1 gm cc?1) were calculated and compared with experiment. It was found that of the three intermolecular potential models, SPC gives the best dielectric constant. Since SPC also yields acceptable results for the energy and structure, it is judged to be the best among the three models studied.  相似文献   

14.
Independent force field validation is an essential practice to keep track of developments and for performing meaningful Molecular Dynamics simulations. In this work, atomistic force fields for intrinsically disordered proteins (IDP) are tested by simulating the archetypical IDP α-synuclein in solution for 2.5 μs. Four combinations of protein and water force fields were tested: ff19SB/OPC , ff19SB/TIP4P-D , ff03CMAP/TIP4P-D , and a99SB-disp/TIP4P-disp , with four independent repeat simulations for each combination. We compare our simulations to the results of a 73 μs simulation using the a99SB-disp/TIP4P-disp combination, provided by D. E. Shaw Research. From the trajectories, we predict a range of experimental observations of α-synuclein and compare them to literature data. This includes protein radius of gyration and hydration, intramolecular distances, NMR chemical shifts, and 3J-couplings. Both ff19SB/TIP4P-D and a99SB-disp/TIP4P-disp produce extended conformational ensembles of α-synuclein that agree well with experimental radius of gyration and intramolecular distances while a99SB-disp/TIP4P-disp reproduces a balanced α-synuclein secondary structure content. It was found that ff19SB/OPC and ff03CMAP/TIP4P-D produce overly compact conformational ensembles and show discrepancies in the secondary structure content compared to the experimental data.  相似文献   

15.
《Biophysical journal》2020,118(7):1621-1633
Biomolecular force fields optimized for globular proteins fail to properly reproduce properties of intrinsically disordered proteins. In particular, parameters of the water model need to be modified to improve applicability of the force fields to both ordered and disordered proteins. Here, we compared performance of force fields recommended for intrinsically disordered proteins in molecular dynamics simulations of three proteins differing in the content of ordered and disordered regions (two proteins consisting of a well-structured domain and of a disordered region with and without a transient helical motif and one disordered protein containing a region of increased helical propensity). The obtained molecular dynamics trajectories were used to predict measurable parameters, including radii of gyration of the proteins and chemical shifts, residual dipolar couplings, paramagnetic relaxation enhancement, and NMR relaxation data of their individual residues. The predicted quantities were compared with experimental data obtained within this study or published previously. The results showed that the NMR relaxation parameters, rarely used for benchmarking, are particularly sensitive to the choice of force-field parameters, especially those defining the water model. Interestingly, the TIP3P water model, leading to an artificial structural collapse, also resulted in unrealistic relaxation properties. The TIP4P-D water model, combined with three biomolecular force-field parameters for the protein part, significantly improved reliability of the simulations. Additional analysis revealed only one particular force field capable of retaining the transient helical motif observed in NMR experiments. The benchmarking protocol used in our study, being more sensitive to imperfections than the commonly used tests, is well suited to evaluate the performance of newly developed force fields.  相似文献   

16.
Klein TE  Huang CC 《Biopolymers》1999,49(2):167-183
The results of 0.5-1.0 ns molecular dynamics simulations of the collagen-like peptides [(POG)4(POA)(POG)4]3 and [(POG)9]3 (POG: proline-hydroxyproline-glycine) are presented. All simulations were performed using the AMBER-94 molecular mechanical force field with a shell of TIP3P waters surrounding the peptides. The initial geometries for the collagen-like peptides included an x-ray crystallographic structure, a computer-generated structure, a [(POG)9]3 structure modeled from the x-ray structure, and the x-ray structure with crystallographic waters replaced with a shell of modeled TIP3P waters. We examined the molecular dynamics peptide residue rms deviation fluctuations, dihedral angles, molecular and chain end-to-end distances, helical parameters, and peptide-peptide and peptide-solvent hydrogen-bonding patterns. Our molecular dynamics simulations of [(POG)4(POA)(POG)4]3 show average structures and internal coordinates similar to the x-ray crystallographic structure. Our results demonstrate that molecular dynamics can be used to reproduce the experimental structures of collagen-like peptides. We have demonstrated the feasibility of using the AMBER-94 molecular mechanical force field, which was parameterized to model nucleic acids and globular proteins, for fibril proteins. We provide a new interpretation of peptide-solvent hydrogen bonding and a peptide-peptide hydrogen bonding pattern not previously reported in x-ray studies. Last, we report on the differences; in particular with respect to main-chain dihedral angles and hydrogen bonding, between the native and mutant collagen-like peptides.  相似文献   

17.
By the virtual screening method we have screened out Dihydrochalcone as a top-lead for the Alzheimer’s disease using the database of about 32364 natural compounds. The binding affinity of this ligand to amyloid beta (A) fibril has been thoroughly studied by computer simulation and experiment. Using the Thioflavin T (ThT) assay we have obtained the inhibition constant IC50 M. This result is in good agreement with the estimation of the binding free energy obtained by the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulation with the force field CHARMM 27 and water model TIP3P. Cell viability assays indicated that Dihydrochalcone could effectively reduce the cytotoxicity induced by A. Thus, both in silico and in vitro studies show that Dihydrochalcone is a potential drug for the Alzheimers disease.  相似文献   

18.
The monosaccharide 2-O-sulfo-α-l-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5-C6 bond was predicted by both force fields to have torsions around 10°, 190°, and 360°.  相似文献   

19.
The total interaction energies for a large number of water proton configurations in the unit cell of hydrate structure I consisting of 46 molecules are compared for qualitatively different water models, such as SPC/E, TIP4P, TIP5P, TIP 3f and AMOEBA. All calculations were carried out using the TINKER molecular modelling package. The Ewald summation method with metallic tin-foil boundary conditions is used to account for long-range electrostatic interactions. It was established that there is a high correlation between the energies calculated using the five water models (interaction potentials). The average correlation coefficient for all pairs of potentials is equal to 0.91. Analogous calculations were carried out to evaluate the consistency of the different water models with respect to a new property of the ice-like system: the hydrogen-bond-reversal asymmetry. It was established that, for all water models, there is relatively high correlation between the energy differences for proton configurations with opposite direction of all hydrogen bonds. In this case, the average correlation coefficient is 0.77. Data for the TIP4P potential differ noticeably from the others, especially owing to the variation in the total interaction energy. The validity and usefulness of simple discrete models of inter-molecular interactions are discussed.  相似文献   

20.
The diffusion of small molecules through polymers is important in many areas of polymer science, such as gas barrier and separation membrane materials, polymeric foams, and in the processing and properties of polymers. Molecular simulation techniques have been applied to study the diffusion of oxygen and carbon dioxide as small molecule penetrants in models of bulk amorphous poly(ethylene terephthalate) (PET) and related alkylene and isomeric polyesters. A bulk amorphous configuration with periodic boundary conditions made into a unit cell whose dimensions were determined for each of the simulated polyesters in the cell having the experimental density. The diffusion coefficients for O 2 and CO 2 were determined via NVE molecular dynamics simulations using the Dreiding 2.21 molecular mechanics force field over a range of temperatures (300, 500 and 600 K) using up to 3 ns simulation time. We have focussed on the influence of the temperature, polymer dynamics, number of CH 2 groups, density and free volume distribution on the diffusion properties. Correlation of diffusion coefficients with free volume and number of CH 2 groups was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号