首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
中国近海持久性毒害污染物研究进展   总被引:4,自引:0,他引:4  
谷河泉  陈庆强 《生态学报》2008,28(12):6243-6251
持久性毒害污染物具有三致效应和遗传毒性,对近海生态环境危害极大。持久性毒害污染物主要通过人海河流和沿岸直排输送人海,主要赋存于近海沉积体系。持久性毒害污染物在沉积物分布累积主要受到沉积环境的影响,包括人海河流径流量、输沙量、水动力、河口海湾冲淤演变等,以及其自身物理化学性质和沉积物性质如颗粒物大小和有机质含量等。不同海区的研究表明,重金属污染整体上较轻微,胶州湾沉积物Cu、As污染较其它地区严重,珠江口盐沼Cd、Zn污染最为严重;近海沉积物有机污染主要集中在工业活动密集的珠江三角洲及邻近海域、长江口及闽江口海区,多氯联苯(PCBs)污染以珠江三角洲最为严重,有机氯农药(OCPs)污染在东南部河口及邻近海区较为严重。在明确持久性毒害污染物在不同沉积环境下差异和共性的基础上,提出若干今后需加强的研究,包括污染物迁移转化规律、重金属化学形态分析、微生物降解机制和污染物相互作用,等。  相似文献   

2.
多溴联苯醚(PBDEs)作为性能优良的阻燃剂,已成为多种环境介质中普遍存在的持久性有机污染物。目前,PBDEs对动物毒性的相关研究较多,但对植物毒性研究仍然较少。本文基于PBDEs对动植物的毒性研究进展,综述了PBDEs对植物的毒性效应、毒性机制以及植物对PBDEs污染的适应和修复机制等,为PBDEs的植物毒性和污染修复研究提供参考。  相似文献   

3.
微生物降解持久性有机污染物的研究进展与展望   总被引:1,自引:0,他引:1  
持久性有机污染物(POPs)是伴随着人类工业化发展而产生的合成类污染物,具有高毒性、持久性、长迁移性和高生物富集性等特点,POPs污染物的微生物降解一直是环境科学与技术应用领域的研究热点。微生物降解技术修复POPs污染环境具有无二次污染、成本低、快速简便等优点,拥有广泛的应用前景。本文论述了各种POPs微生物分解代谢的最新研究进展,包括降解性微生物资源以及降解机制。此外,还讨论了计算生物学、合成生物学、基因组学等技术在POPs微生物降解中的潜力和应用,以期为环境中持久性有机污染物的修复提供参考。  相似文献   

4.
水域是地球环境的重要组成部分,也是最易受污染的生态系统之一。水生态系统中不同营养级别的水生生物可通过摄食、接触等多种途径摄入水体中的污染物。因此,监测水域污染物对水生生物和生态系统的影响,解析污染物对不同水生生物的毒性机制,筛选敏感、有效的生物标志物对生态毒理学研究和环境风险评价具有重要意义。RNA测序(RNA sequencing,RNA?seq)技术因所需样品量少,且不需参考序列,可在整体水平上鉴定基因差异表达,成为水生生物生态毒理学研究的最佳方法之一。基于此,介绍了RNA?seq技术的基本流程与数据分析过程,对该技术在不同生态位的水生生物(如鱼类、两栖类、贝类、甲壳类等)生态毒理学中的应用展开综述,并对RNA?seq技术面临的不足、挑战及发展趋势进行探讨,以期为该技术在水生生物生态毒理学研究中的应用,尤其是水生态环境中污染物胁迫水生生物机制的阐明及污染水域生态环境恢复提供参考。  相似文献   

5.
微生物菌剂在难降解有机污染治理的研究进展   总被引:2,自引:0,他引:2  
大量的难降解有机污染物被排放到环境中,因其蓄积性、持久性和生物毒性,对人类健康和生态环境造成严重危害。近年来,利用微生物菌剂治理难降解有机污染物的研究已取得较好的进展。综述微生物菌剂在国内外的发展历程,介绍微生物菌剂制备中常用的固定化技术及载体材料,并分析总结微生物菌剂在酚类物质、多环芳烃和多氯联苯等有机污染物治理中的研究进展。在此基础上,提出治理难降解有机污染物的微生物菌剂研发所存在的主要问题及其展望。  相似文献   

6.
斑马鱼胚胎发育技术在毒性评价中的应用   总被引:24,自引:0,他引:24  
对斑马鱼(Brachydanio rerio)胚胎发育技术在环境科学领域的应用作一综述,斑马鱼胚胎毒性技术是各国际标准组织认可的标准毒性测定方法之一,属于致畸效应检验,该项技术成本低、易操作、灵敏度高,特别是具有可记录多项毒性指标的特点,并可以此判断污染物的致毒机理,斑马鱼胚胎发育过程受重金属影响较大,其中Cu的毒性最强,Hg次之,Cr最弱,有机农药中三苯基锡类(TPTA)的毒性最强,林丹次之;有机试剂中含卤素取代基和苯胺类毒性最大,这与其它毒性测定方法的结果完全一致,并表现出较高的灵敏度,特别是选用非致死性的指标,可以初步认定这对测定复合污染物毒性并分析毒物的致畸效应方面有很好的发展前景。  相似文献   

7.
全氟辛酸的污染状况及环境行为研究进展   总被引:7,自引:0,他引:7  
作为一种新型的持久性有机环境污染物,全氟辛酸(PFOA)及其盐类所造成的全球性生态系统污染已成事实,并成为持久性有机污染物研究的又一个新热点.动物实验表明, PFOA能引起肝脏、生殖、发育、遗传和免疫等毒性.美国国家环保局科学顾问委员会有关报告将PFOA描述为“可能的(likely)致癌物”,美国国家环保局已制订了有关计划促使生产企业主动削减PFOA物质在产品中含量, 以削减PFOA及其母体物质在环境中的排放.此外,欧美等发达国家也正在推进PFOA及其相关物质的风险评价研究,并积极寻求较为安全的替代产品.本文简要概述了PFOA的理化特性、环境来源及其在环境中的迁移转化、归宿及污染现状,并展望了今后PFOA的研究趋势.  相似文献   

8.
生物吸附剂对污染物吸附的细胞学机理   总被引:3,自引:0,他引:3  
蔡佳亮  黄艺  礼晓 《生态学杂志》2008,27(6):1005-1011
重金属和持久性有机污染物在自然界中非常稳定,具有难去除性,对人类生命和健康会造成直接或间接的危害.目前,生物吸附剂已成为处理重金属和持久性有机污染物研究的热点和重点.本文根据近年来的研究成果对生物吸附剂进行了系统分类,阐述了生物吸附剂对重金属和持久性有机污染物吸附的细胞外、细胞表面和细胞内吸附机理,以及相关的影响因素.同时,还探讨了其研究现状中所存在的问题和未来的研究方向.  相似文献   

9.
植物修复油污土壤是控制环境污染的有效途径,但在实际应用中存在着植物生物量较小、生长缓慢等不足。将具有修复功能的外源基因引入植物中,使转基因植物的生物修复功能大大增强,为解决土壤石油污染问题提供了有效手段。文章系统论述了转基因植物对石油污染土壤中有机污染物,尤其是对持久性有机污染物(POPs)的吸收、转化和降解作用以及近年来所取得的突破性进展,并指出了利用生物基因修复技术进行土壤石油污染研究的发展趋势。  相似文献   

10.
红树林湿地多环芳烃污染研究进展   总被引:8,自引:2,他引:6  
孙娟  郑文教  陈文田 《生态学杂志》2005,24(10):1211-1214
多环芳烃(PAHs)是一类广泛存在于天然环境中的有机污染物,对生态环境和人类健康造成严重的潜在威胁。本文概述了红树林湿地中多环芳烃的来源和分布,其对红树植物的生理毒性效应、红树植物的生物修复作用和生物降解等方面的最新研究进展进行了总结,并对未来PAHs在红树林的研究趋势进行了展望分析。  相似文献   

11.
持久性有机污染物在水生食物网中的传递行为   总被引:1,自引:0,他引:1  
冯秋园  万祎  刘学勤  刘永 《生态学报》2017,37(9):2845-2857
食物网是持久性有机污染物(POPs)在水生生态系统中传递的重要途径,了解其传递行为与机制是POPs生态暴露风险评价的科学基础。从4个方面展开了讨论和分析:(1)食物网主要特征(营养级和食物链长度)与POPs环境行为的关系;(2)POPs在底栖及底栖-浮游耦合食物网中的环境行为;(3)微食物网对POPs环境行为的作用;(4)食物网的变化对POPs环境行为的影响。主要结论如下:(1)已有研究对水生生物中POPs生物放大作用存在较大争议。一般营养级越高,POPs生物富集性越强,但由于各种生态和生理性质的影响,也存在例外情况。食物链长度与POPs生物富集性呈正相关。(2)POPs通过底栖食物网将沉积物中的POPs向上传递,底栖-浮游食物网的耦合提高了高营养级消费者的暴露风险,目前就POPs在底栖食物网中的生物放大性是否大于浮游食物网存在争议。(3)微生物具有较大的比表面积,是吸附POPs的重要载体。另,沉积物中的微生物通过分解有机质,将POPs释放到水柱中。微生物降解也是环境中POPs脱离环境的重要途径。(4)在内、外压力下,食物网结构和功能发生变化,使物质和能量的传递方向和效率发生改变,并与环境理化性质的变化互相耦合,影响POPs的环境行为。当前研究的重点多集中在POPs在浮游食物网,尤其是高营养级浮游食物网中的环境行为,对POPs在底栖及底栖-浮游耦合食物网和微食物网中环境行为的研究相对缺乏。有关POPs在食物网中环境行为的研究多集中在食物网的某个部分,时间尺度较短,缺乏对POPs环境行为动态变化的研究,未来需深入开展多尺度和多角度的POPs在食物网中环境行为的动态变化研究。新型POPs的生产和使用量不断增加,但有关其在食物网中环境行为的相关分析还较为匮乏,需加强研究。  相似文献   

12.
This review article intends to introduce the possibility of utilizing selective supercritical fluid extraction (SFE) as a tool to study sorption/desorption processes and bioavailability of persistent organic pollutants (POP) in sediment. Sorption/desorption behavior and bioavailability studies of POPs is a large research area, but still many unsolved problems exists. Therefore novel approaches to investigate mechanistic behavior of POPs in sediments are needed. Present literature on SFE points to the fact that selective SFE measurements can improve our knowledge, and recent investigations have been performed that demonstrate this. Results obtained with selective SFE can be connected to desorption of POPs in sediments under natural conditions in aquatic ecosytems. The ultimate goal is to use selective SFE as a way to determine the bioavailable fraction present within a matrix. A few preliminary results are presented here which may serve as a starting point for future studies.  相似文献   

13.
Since the mid-1900s, the global environment has become increasingly contaminated with Persistent Organic Pollutants (POPs), including many with dioxin-like properties. These compounds generally have low water solubility, do not degrade readily in the environment, bioaccumulate in food chains, and have been linked to adverse health effects in both humans and wildlife. The presence of such compounds in terrestrial and aquatic food chains is relevant to those concerned with both human health and environmental protection because of the many common exposure pathways and biological effects among different species. In the past, some chemicals with health risks for humans have been identified following reports of adverse effects in wildlife. Integrating human and ecological risk assessments may improve society's ability to manage the design, manufacture, use and disposal of chemicals in a safe and efficient manner. This can be demonstrated with this case study, which summarizes approaches to evaluating the sources, transport and fate of certain POPs, used largely in the past, and their associated health risks to humans and biota.  相似文献   

14.
During the last few years, a new drift on screening of persistent organic pollutants (POPs) present in the environment of Pakistan has been observed. However, across the globe a number of reports have been devoted to the screening levels, distribution, and risk assessment and on the emission of POPs. In the case of Pakistan, the knowledge achieved and understanding of POPs contamination in the environmental compartments are still limited. Recently published literature has been a key to explore the mystery of new emerging POPs from the environment of the country. In this review, an effort was made to summarize the results of recently published reports on POPs (PCNs, PBDEs, DPs, and PCBs) from biotic and abiotic environments of Pakistan. This review also presents the available data published to date for organochlorines. The results of previously reported studies reflected that newly emerging POPs were influenced by the industrial and urban fractions and were in line with the distribution pattern of other regions of the world. These results revealed that urgent attention must be paid to these new emerging POPs, as they are reported to be present in considerable concentrations. Such detected concentrations of these banned pollutants should be checked/screened by scientific authorities to avoid adverse health risks to humans and animals.  相似文献   

15.
Vitamins A (retinol) and E (α-tocopherol) are dietary vitamins, essential for, e.g., growth and development, reproduction, and immune function. Persistent organic pollutants (POPs) have been found to be related to vitamin A and E metabolism. However, few investigations have been published on this health issue in polar bears (Ursus maritimus). The aim of this study was thus to provide reference values for concentrations of vitamin A in liver, kidney cortex, and whole blood and vitamin E in kidney cortex and whole blood from 166 East Greenland polar bears, as well as to assess the relationship between POPs and vitamin concentrations. In addition, vitamin concentrations were analyzed for temporal trends (1994–2008). Results showed vitamin A in liver to be higher in adult bears and the concentrations of vitamin E in kidney and blood to likewise be generally higher in adult bears. In addition, all analyzed contaminant groups were correlated with at least one of the vitamin parameters, predominantly in a negative way. Finally, vitamin A liver concentrations as well as concentration of vitamin E in kidney and blood showed a temporal increase. Together, these results add to the weight of evidence that POPs could be disrupting polar bear vitamin status. However, while the observed temporal increases in vitamin concentrations were likely POP related, the question remains as to whether they stem from influence of contaminants only or also, e.g., changes in prey species. Further studies are needed to tease apart the causes underlying these changes in vitamin concentrations.  相似文献   

16.
尽管南极被认为是远离人类污染的净土,但近年来不断发现有机氯农药、多氯联苯、多溴联苯醚和全/多氟化合物等传统和“新型”持久性有机污染物(POPs)存在于南极的非生物及生物环境中,由此引发了全球各国对南极生态系统的不断关注。POPs性质稳定,能够久存于环境中,并具有毒性,易富集于生物体内并产生一定的健康风险。为了解南极和南大洋持久性有机污染物的生物地球化学过程及其对生物种群和生态系统产生的影响,本文以南大洋典型食物链为主线并结合南极海洋生物生活习性,综述了近年来国内外学者对南极海洋食物链不同营养级生物体内POPs的研究现状,并对南极海洋生态系统POPs研究前沿和热点提出了展望。研究显示,南极地区是世界上污染程度最低的地区,但过去几十年有关南极海洋生物中POPs的类型不断增加,表明该地区受到地区内/外活动的影响日益增加。零散的研究数据以及各异的技术方法使得目前仍无法阐析POPs沿食物链传递的机制。有关南极海洋生态系统POPs动态的长期监测与评估计划亟待建立。  相似文献   

17.
Nitrate is an important nutrient and electron acceptor for microorganisms, having a key role in nitrogen (N) cycling and electron transfer in anoxic sediments. High-nitrate inputs into sediments could have a significant effect on N cycling and its associated microbial processes. However, few studies have been focused on the effect of nitrate addition on the functional diversity, composition, structure and dynamics of sediment microbial communities in contaminated aquatic ecosystems with persistent organic pollutants (POPs). Here we analyzed sediment microbial communities from a field-scale in situ bioremediation site, a creek in Pearl River Delta containing a variety of contaminants including polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs), before and after nitrate injection using a comprehensive functional gene array (GeoChip 4.0). Our results showed that the sediment microbial community functional composition and structure were markedly altered, and that functional genes involved in N-, carbon (C)-, sulfur (S)-and phosphorus (P)- cycling processes were highly enriched after nitrate injection, especially those microorganisms with diverse metabolic capabilities, leading to potential in situ bioremediation of the contaminated sediment, such as PBDE and PAH reduction/degradation. This study provides new insights into our understanding of sediment microbial community responses to nitrate addition, suggesting that indigenous microorganisms could be successfully stimulated for in situ bioremediation of POPs in contaminated sediments with nitrate addition.  相似文献   

18.
The use of passive air samplers (PAS) in recent years to monitor the occurrence of persistent organic pollutants (POPs) in air has been increasing, not only globally, but also at regional and/or local scales. The present study was aimed at analyzing the airborne concentrations of the POPs: polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated naphthalenes (PCNs) in the vicinity of a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). Mean air levels of PCBs, PBDEs, and PCNs were 44.1, 65.0, and 6.65 pg/m3, respectively. No differences were noted according to the distance or direction from the plant for any chemical. Furthermore, this information was used to estimate the air inhalation of POPs for the local population. Environmental exposure to POPs through air accounted for only <2% of the total when compared with the dietary intake. The overall results indicate that the MSWI here assessed does not mean a relevant increase on human health risks derived from inhalation of POPs. PAS can also be utilized for human health risk assessment studies, being also suitable tools to control the environmental burden of non-regulated chemicals, for which no emission thresholds have yet been derived.  相似文献   

19.
In India, persistent organic pollutants (POPs) have been used extensively in both agricultural and industrial sectors, resulting in deterioration of terrestrial and aquatic environment. In the present study, analysis of POPs in fresh water ecosystem comprising samples of fish, sediments, and water was done from fish farms in Punjab, India. POP residues comprising lindane, p,p’-DDE, p,p’-DDD, endosulfan sulfate, and polychlorinated biphenyl (PCB) congeners (PCB-28, PCB-138, PCB-180) were detected in fish samples. Residues of p,p’ DDE and p,p’ DDD were recorded utmost in fish flesh with mean levels of 13.8 and 5.8 ng g?1, respectively. PCB residues were estimated in 20 fish samples with values in the range ND–46.3 ng g?1. The mean residue levels detected in this study were lower than the recommended maximum residue limits (MRLs) described by EU-MRLs, Italian-MRLs, FDA-2001, and FAO-1983. At the current levels of POP residues in fish flesh, the human health risk assessment based on both deterministic (mean residue levels) and probabilistic (95th percentile upper bound limit) approaches, reflected that cancer and non-cancer risks were within United States Environmental Protection Agency (USEPA) prescribed limits. The presence of POP residues in fish farm sediments and water elucidated the relationship between occurrence of POP residues in fish and its aquatic environment.  相似文献   

20.
DNA polymerase gamma, a mitochondrial replication enzyme of yeasts and animals, is not present in photosynthetic eukaryotes. Recently, DNA polymerases with distant homology to bacterial DNA polymerase I were reported in rice, Arabidopsis, and tobacco, and they were localized to both plastids and mitochondria. We call them plant organellar DNA polymerases (POPs). However, POPs have never been purified in the native form from plant tissues. The unicellular thermotrophic red alga Cyanidioschyzon merolae contains two genes encoding proteins related to Escherichia coli DNA polymerase I (PolA and PolB). Phylogenetic analysis revealed that PolB is an ortholog of POPs. Nonphotosynthetic eukaryotes also have POPs, which suggested that POPs have an ancient origin before eukaryotic photosynthesis. PolA is a homolog of bacterial DNA polymerase I and is distinct from POPs. PolB was purified from the C. merolae cells by a series of column chromatography steps. Recombinant protein of PolA was also purified. Sensitivity to inhibitors of DNA synthesis was different in PolA, PolB, and E. coli DNA polymerase I. Immunoblot analysis and targeting studies with green fluorescent protein fusion proteins demonstrated that PolA was localized in the plastids, whereas PolB was present in both plastids and mitochondria. The expression of PolB was regulated by the cell cycle. The available results suggest that PolB is involved in the replication of plastids and mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号