首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protogynous hermaphroditism, female-to-male sex change, is well known among reef fishes where large males monopolize harems of females. When the dominant male disappears from a harem, the largest female may change sex within a few weeks. Recently, from experiments with some protogynous haremic fishes in which two males' cohabitated, it was confirmed that sexual behavior and gonads were completely reversible according to individual social status. However, the ability to reverse secondary-developed sexual body coloration has never been examined in any protogynous fish. We conducted two male cohabitation experiments with the protogynous haremic angelfish, Centropyge ferrugata, which has conspicuous sexual dichromatism on the dorsal fin. Smaller males of C. ferrugata soon performed female-specific mating behaviors when they became subordinated after losing a contest. They then completed gonadal sex change to females 47 or 89 d (n=2) after beginning cohabitation. In the course of the reversed gonadal sex change, male-specific coloration on the dorsal fin changed to that of a female. Thus, the sex of C. ferrugata, including secondary developed sexually dichromatic characteristics, can be completely reversible in accord with their social status.  相似文献   

2.
Mackie  M. C. 《Coral reefs (Online)》2003,22(2):133-142
The cues controlling sex-change have been elucidated for various species of hermaphroditic fishes that inhabit coral reefs, but not for the epinepheline serranids. A male removal experiment conducted on an assemblage of the half-moon grouper, Epinephelus rivulatus, demonstrated that protogynous sex-change in this species is socially controlled, possibly by the suppressive dominance of males and a threshold sex ratio. The experiment showed that a reproductively ripe female can change sex and become a male with ripening testis within 3 weeks. However, this process can be delayed, slowed, or stopped by the presence of other males in the area.  相似文献   

3.
Primary males that function as males throughout their lives are often found among protogynous fishes such as wrasses and parrotfishes. However, the issue of whether the sexuality of primary males involves gonochorism or hermaphroditism remains uncertain. To clarify this, we implanted estradiol-17beta (E2) into the body cavities of primary males of two protogynous wrasses, Halichoeres poecilopterus and Halichoeres tenuispinis. At 51-63 days after implantation, primary males with E2 treatment in both wrasses were observed to develop ovarian tissues. These results suggest that primary males of Halichoeres wrasses potentially have the ability to change sex and that estradiol-17beta is related to gonadal transitions in primary males.  相似文献   

4.
The Gorgeous goby Lythrypnus pulchellus shows extreme sexual plasticity with the bidirectional sex-change ability socially controlled in adults. Therefore, this study describes how the hierarchical status affects hormone synthesis through newborn hormone waste products in water and tests the influence of body size and social dominance establishment in sex reversal duration and direction. The associated changes in behavior and hormone levels are described under laboratory conditions in male–male and female–female pairs of similar and different body sizes, recording the changes until spawning. The status establishment occurred in a relatively shorter time period in male and female pairs of different sizes (1–3 days) compared to those of similar size (3–5 days), but the earlier one did not significantly affect the overall time of sex change (verified by pair spawning). The changes in gonads, hormones, and papilla occurred in sex-changer individuals, but the first one was observed in behavior. Courtship started at 3–5 days in male pairs and from 2 h to 1 day in female pairs of both groups of different and similar sizes. Hormones did not gradually move in the new sexual phenotype direction during the sex-change time course. Nonetheless, estradiol regulated sex change and 11-ketotestosterone enabled bidirectional sex change and was modulated by agonistic interactions. Cortisol is associated with status and gonadal sex change. In general, similar mechanisms underlie sex change in both directions with a temporal change sequence in phases. These results shed new light on sex-change mechanisms. Further studies should be performed to determine whether these localized changes exist in the steroid hormone synthesis along the brain–pituitary gonad axis during social and bidirectional sex changes in L. pulchellus.  相似文献   

5.
In protogynous sex-changing fishes, females are expected to compete for the opportunity to change sex following the loss of a dominant male and may exhibit growth and behavioural traits that help them maintain their dominant status after sex change. A male removal experiment was used to examine changes in female growth and behaviour associated with sex change in the haremic wrasse Halichoeres miniatus and to test whether any changes in growth associated with sex change were recorded in otolith microstructure. Dominant females began displaying male-characteristic behaviour almost immediately after the harem male was removed. The frequency of interactions between females increased following male removal. In contrast, feeding frequency of females decreased. The largest one to three females in each social group changed sex following male removal and exhibited an increase in growth associated with sex change. Sex changers grew more than twice as fast as non-sex changers during the experimental period. This growth acceleration may enable new sex-changed males to rapidly reach a size where they can defend the remaining harem from other males. An optical discontinuity (check mark) was present in the otoliths of sex-changed fish, and otolith accretion rate increased significantly after the check mark, corresponding with the increased growth rate of sex-changing females. Wild caught males, but not females, exhibited an analogous check mark in their otoliths and similar increases in otolith increment widths after the check. This indicates that an increase in growth rate is a regular feature of sex-change dynamics of H. miniatus. Communicated by Environment Editor Prof. Rob van Woesik  相似文献   

6.
Bi‐directional sex change has recently been reported in a range of reef fishes, including haremic species that were earlier thought to be protogynous (female to male). However, the occurrence of this phenomenon and the social conditions driving the reversion of males to females (reversed sex change) have been poorly documented under natural conditions. Reversed sex change is predicted to occur in low‐density populations where facultative monogamy is common. However, few studies have evaluated this over a long period in such populations. We documented the occurrence of bi‐directional sex change during a 3‐yr demographic survey of a population characterised by small harem sizes in haremic hawkfish Cirrhitichthys falco. New males were derived following a change in sex of functional females (secondary males; n = 3) and juveniles always matured first as females (n = 3). Thus, C. falco exhibited a typical protogynous sexual pattern, consistent with a range of haremic fish species. We observed reversed sex change in two males. In both cases, all the females disappeared from their harems and the neighbouring males expanded their territories to encompass the territories of the sex changers. However, bachelor males did not always revert to females. A dominant male experienced bachelor status twice but regained mating opportunities following the immigration of a female into his territory or by taking a female from a neighbouring harem. Thus, we conclude that bachelor males use reversed sex change as a facultative tactic to regain reproductive status in a haremic mating system. In addition, we discuss the influence of harem size upon occurrence of reversed sex change.  相似文献   

7.
The sex and stage of gonadal development of longfinned river eels Anguilla reinhardtii , captured from nine river catchments in New South Wales, Australia, between 1999 and 2001, were determined macroscopically. Sex was verified by histology. Histology was also necessary, however, to accurately define stages of gonadal development, particularly in individuals <600 mm in total body length. Anguilla reinhardtii displayed asynchronous gamete development. The most advanced cells present in migrating male and female A. reinhardtii were spermatocytes and pre-vitellogenic oocytes, respectively. Gonadal development stages were positively correlated with body size in both sexes. Females, however, were significantly larger than males and their gonads matured over a broader size range. Size at sexual differentiation (42–60 cm for males and 50–76 cm for females) was much larger than for most other anguillids that have been studied, with the exception of the New Zealand longfinned eel Anguilla dieffenbachii . Corresponding with its large range in size at sexual differentiation was a relatively large range in size at migration for both males (44–62 cm) and females (74–142 cm).  相似文献   

8.
Female choice is thought to increase the fitness returns of females. The complementary choice model states that the best mate depends on the particular genotype of a female. Aculeate Hymenoptera represent a special case of complementary female choice because males should be chosen on the basis of their allele at the sex determination locus. The prevalent sex determination mechanism in bees and wasps (single-locus complementary sex determination) requires that, to produce a daughter, diploid offspring are heterozygous at the sex determination locus. Otherwise, infertile diploid males result. Inevitably, the proportion of diploid males increases with the rate of inbreeding. In the European Beewolf, males scent mark territories to attract mates and the composition of the pheromone might provide a basis for female choice. One crucial prerequisite for females to be able to discriminate against brothers and avoid inbreeding is that the male sex pheromone varies with familial affiliation. This hypothesis was tested by analysing the pheromone of male progeny of eight mothers using gas chromatography and mass spectrometry. A significantly higher similarity was found among brothers than among unrelated individuals. Such a genetic component of a male sex pheromone has not yet been described from aculeate Hymenoptera.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 433–442.  相似文献   

9.
Male pregnancy in the family Syngnathidae (pipefishes, seahorses and seadragons) predisposes males to limit female reproductive success; sexual selection may then operate more strongly on females and female sexual signals may evolve (sex-role reversal). A bewildering array of female signals has evolved in Syngnathids, e.g. skin folds, large body size, colouration, markings on the body and elaborate courtship. These female sexual signals do not seem quantitatively or qualitatively different from those that evolve in males in species with conventional sex roles where males provide females or offspring with direct benefits. In several syngnathid species, males also evolve ornaments, females are choosy in addition to being competitive and males compete as well as choosing partners. Thus, sex roles form a continuum, spanning from conventional to reversed within this group of fishes. Cases are presented here suggesting that stronger sexual selection on females may be most extreme in species showing classical polyandry (one male mates with several females, such as many species where males brood their eggs on the trunk), intermediate in polygynandrous species (males and females both mate with more than one partner, as in many species where males brood their eggs on the tail) and least extreme, even exhibiting conventional sex roles, in monogamous species (one male mates solely with one female, as in many seahorses and tropical pipefishes). At the same time caution is needed before unanimously establishing this pattern: first, the connection between mating patterns, strength of sexual selection, sex roles and ornament expression is far from simple and straightforward, and second, knowledge of the actual morphology, ecology and behaviour of most syngnathid species is scanty. Basically only a few Nerophis, Syngnathus and Hippocampus species have been studied in any detail. It is known, however, that this group of fishes exhibits a remarkable variation in sex roles and ornamentation, making them an ideal group for the study of mating patterns, sexual selection and sexually selected signals.  相似文献   

10.
The present study was carried out to analyze the differences in the activity of hormone stanniocalcin (STC) between male and female fishes of Mastacembelus armatus during their gonadal cycle. A large variation in nuclear diameter of cells of corpuscles of Stannius (CS) were recorded in relation to testicular cycle as well as ovarian cycle which indicates that the cellular activity varied with different phases of reproductive cycle in both male and female fish. Similar changes in nuclear diameter of CS cells were also observed after 17alpha-methyltestosterone administration in males and 17 β-estradiol administrations in females. A positive correlation was observed between plasma STC levels, gonadosomatic index (GSI) and the sex steroids in both sexes, suggesting that STC has a role in the processes involved in gonadal development. In addition females showed remarkable changes in plasma calcium level during gonadal cycle while no such change for males were observed. In females the plasma calcium level estimated during different phases of reproductive cycle indicates positive correlation between plasma level of calcium and gonad growth. Thus hyperactivity of CS cells was noted in both male and female fishes during gonadal cycle along with the differences in the activity of STC as well. In female it may act as hypocalcemic factor and bring the level of calcium to normal which increases during preparatory and pre spawning phases to fulfill the increased demand of calcium for vitellogenesis. However data of male fishes indicated that plasma STC concentration varied widely during gonadal cycle but showed no consistent relationship to plasma calcium level.  相似文献   

11.
Arisaema species exhibit gender diphasy, or sex change, where individual plants produce either male, monoecious or female inflorescences depending on their size. Three basic sex-change patterns have been described in Arisaema. Type I species change between male and monoecious phases, type II species change between male, monoecious and female phases, while type III species change between male and female phases. Theoretical models suggest that sex ratios should be biased toward males, the sex with the lowest cost of reproduction. The goal of this study was to examine sex-ratio variation among Arisaema species that differ in sex-change patterns. Data from an extensive literature review, consisting of all available studies reporting Arisaema sex ratios, were combined with data from extensive field surveys of Arisaema dracontium and Arisaema triphyllum in southern Indiana, USA. This data set contains nearly 30 000 plants from 12 species. All species conformed to either the type I or type III pattern of sex change. There was little evidence for a distinct type II pattern of sex change, given that plants with monoecious inflorescences were rare relative to plants with pistillate inflorescences. The mean sex ratio in type I species (79.9% male) was significantly greater than in type III species (63.7% male). The data are consistent with the prediction that type I species are likely to have greater costs associated with female reproduction. We suggest that all Arisaema species have similar patterns of floral development, but differ in their ontogenetic patterns for male and female flowering.  相似文献   

12.
Defining sex roles has been driven by differences in mating systems at the extreme: polygyny and polyandry. Roles may reverse depending on which sex limits the reproductive rate of the other, and it is generally the female that limits the male. Males therefore compete for female mates. But in species in which the male limits the reproductive rate of the female, the female competes for male mates and assumes the masculine role. Complications arise, however, in species with typical roles when males are temporarily limiting, and females then briefly compete for and display to males. Problems also occur among tightly monogamous species with biparental care, where the mates have equal reproductive rates; both males and females compete intrasexually for mates. Despite this, monogamous species have masculine and feminine roles, typically manifested as the male dominating the female. Some monogamous species are nevertheless sex-role reversed. The pervasive behavioral mechanism characterizing the masculine role is dominance through aggression, size, or both. Attending more to behavioral mechanisms will enrich our understanding of sex-role reversal.  相似文献   

13.
Suggrundus meerdervoortii (Platycephalidae) has been hypothesized to pass through four phases, thus changing sex three times: the first male, first female, second male and second female phases. In this study, gonads of males and females were constructed from developed testis with an immature ovary and only oocytes, respectively. The females in this study were significantly larger than the males. There was no female in the size range of the hypothesized first female phase. Reversed sex change among protandrous fishes has not been reported in any other studies. Thus, the specimens of the hypothesized first female phase may be different from S. meerdervoortii. Therefore, this species should be considered protandrous without reversed sex change.  相似文献   

14.
The social condition of bi-directional sex change in the gobiid fish Trimma okinawae was investigated at Akamizu Beach, Kagoshima, Japan. Social groups of T. okinawae usually consisted of a large male and one or more smaller females. The number of females in the group was positively correlated with male body size and groups were usually separated from each other by 1–3 m. In total, 22 instances of female-to-male sex change and three instances of male-to-female sex change were observed during the 16 months that social groups were monitored. Two individuals changed sex twice: female to male and back to female. Female-to-male sex change occurred when the male disappeared from a group. Either the largest remaining female changed sex to male or a large female from another group immigrated and changed sex to male. Larger individuals appear to benefit from becoming male because they can monopolize the breeding opportunities with several females, as reported in other protogynous fishes. Sex change from male-to-female only occurred when a solitary male joined another group as a subordinate. Mortality rates are high in these small fish, therefore joining another group and reproducing as a female is likely to increase the reproductive value of a solitary male.  相似文献   

15.
To examine how a change in an individual's social status could influence its behavioural sex, we conducted male "removal-and-return" experiments in the polygynous wrasse, Halichoeres melanurus. This coral-reef fish is a protogynous hermaphrodite: the largest female (LF) living in a male's territory typically completes functional sex change within 2–3 weeks after the male's disappearance. In this experiment we removed males from their territories just prior to spawning time, about 1 h before sunset. In 12 of 30 trials, the resident LF spawned in the male role with smaller females, 21–98 min after male removal. Previous research suggests the LF should readily adopt male sexual behaviour to retain smaller females as future mates. However, the LFs of smaller body size were less likely to immediately perform male-role behaviour. This could be related to females' preference for larger mates: smaller LFs would be less likely to be chosen by other females, even if they could complete sex change and defend a territory. When a male was returned immediately after an occurrence of female–female spawning, the LF subsequently spawned in the female role with the returned male (6 of 12 trials). It could be adaptive for the LFs to accept a larger male as a mate rather than to fight against it. Thus, behavioural sex is reversible in H. melanurus, changing rapidly with social status. Electronic Publication  相似文献   

16.
The gonadosomatic index of sobaity Sparidentex hasta fits well with the natural spawning season of February-March. At 12 and 24 months all the population matured as males. However, during this time, between April-September intersex gonads were seen. From October of the third year of life, females were seen for the first time. These changes in the histology of the gonads were correlated with the hormonal profile. Testosterone showed no significant correlation with sex but 11-ketotestosterone correlated very well with the mature male gonads and thus can be used for sexing. Oestradiol-17β higher in sex reversed individuals (females) in the spawning season than in males. The sequence of events in the protandrous sex change of this fish during the first two spawning seasons is male → intersex → male. However, during the third spawning season (age 36–37 months) this sequence is male →intersex → male or female (10–17%).  相似文献   

17.
The male pregnancy of pipefishes and seahorses has led to the inference that females compete most intensely for access to mates, because males limit female reproduction. However, recent work has shown that in different species either sex may be the predominant competitor for mates. In this family, there is an apparent association between the mating pattern and the sex roles: polygamous species show reversed sex roles whereas monogamous species exhibit 'conventional' sex roles. These studies emphasize that sex role reversal is not synonymous with male parental care.  相似文献   

18.
Three experiments were conducted to investigate the effect of oral administration of trenbolone acetate and 17a-methyltestosterone on sex determination in 28-day-old bluegill, Lepomis macrochirus Rafinesque, fry. Multiple androgen doses and various treatment durations were tested. All treatments produced fewer males and females than did the control group (P < 0.01). All concentrations of both androgens produced a high proportion of intersex fish (38–81%). The number of males and females declined with the increase in androgen dose or treatment duration. Sterile fish were found in treatments with a higher dose rate or a longer treatment period. The predominance of intersex fish and reductions of both males and females in the androgen treatments suggest that gonadal development of both genotypic male and female fish were being altered by the hormone treatment.  相似文献   

19.
Abstract  The importance of male aggregation size for female visitation and initiation of male pheromone-calling was investigated in Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) using artificial male aggregations in large laboratory cages. Female B. tryoni visited the largest aggregation more frequently than single males in association with a higher proportion of calling males, but there was no correlation between aggregation size and female visitation. Female B. tryoni had a limited capacity to perceive a difference between the number of calling males. Calling propensity of male B. tryoni was increased by the presence of conspecific males. Increased calling propensity in larger groups of male B. tryoni may be due to social facilitation of male calling behaviour. Female visitation at aggregations was only weakly associated with male calling, suggesting that aggregation size and the number of pheromone-calling males are not the only factors important in locating mates in B. tryoni , and it is possible that low-density populations could persist so long as females can encounter single males.  相似文献   

20.
Traditional sex-change theory cannot explain the existence of protogynous species in which the largest females do not change sex when provided an opportunity. We present an expected reproductive success threshold model that incorporates previously unconsidered factors (size-fecundity skew and sperm competition) that can strongly affect reproductive expectations. The model predicts a variety of circumstances when the largest females remaining in a social group should not change sex in the absence of the dominant male, yet it also predicts that these same conditions should promote sex change in smaller females. If a large female's fecundity is markedly higher than the aggregate of the other members of her social group (i.e., there exists a skew in the size-fecundity distribution that raises a large female's expected reproductive success threshold), she should defer from sex change. Sperm competition can strongly lower the expectation of paternity obtained as a sex-changed male, and this also raises the threshold. The model suggests that deferral of sex change should be more common in species in which intense sperm competition is prevalent (such as fishes living in seagrass beds). This prediction appears consistent with patterns seen in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号