首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Gonad development and sex differentiation from embryos to 594‐day‐old individuals were investigated in farmed Acipenser naccarii using light and transmission electron microscopy. The migrating primordial germ cells first appear along the dorsal wall of the body cavity in embryos 1.5 days before hatching. The gonadal ridge, containing a few primary primordial germ cells (PGC‐1) surrounded by enveloping cells, appears in 16‐day‐old larvae. At 60 days, the undifferentiated gonad is lamellar and PGC‐1 multiply, producing PGC‐2. In 105‐day‐old juveniles, a distinct germinal area with advanced PGC‐2 appears on the lateral side near the mesogonium and the first blood vessels are visible. At 180 days, putative ovaries with a notched gonadal epithelium and putative testes with a smooth one appear, together with adipose tissue on the distal side. In 210‐day‐old juveniles, active proliferation of germ cells begins in the putative ovaries, whereas putative testes still contain only a few germ cells. The onset of meiosis and reorganization of stromal tissue occurs in ovaries of 292‐day‐old individuals. Ovaries with developed lamellae enclosing early oocyte clusters and follicles with perinucleolar oocytes occur at 594 days. Meiotic stages are never found, even in anastomozing tubular testes of 594‐day‐old individuals. Steroid producing cells are detected in the undifferentiated gonad and in the differentiated ones of both sexes. Anatomical differentiation of the gonad precedes cytological differentiation and female differentiation largely precedes that of the male. Gonad development and differentiation are also associated with structural changes of connective tissue, viz. collagen‐rich areas are massive in developing testes and reduced in ovaries. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
R-spondin1 (RSPO1) is a potential female-determining gene in human (Homo sapiens) and mouse (Mus musculus). Its differential expression in these mammals is correlated with signaling for sex determination. As a way of studying sex determination in fish we cloned and analyzed a RSPO1 gene in zebrafish (Danio rerio). Using real-time PCR, we observed that RSPO1 is expressed more strongly in ovaries than in testes, suggesting that RSPO1 may have a role in gonad differentiation. High RSPO1 expression was detected in some non-gonadal organs like muscle and kidneys. In situ hybridization results demonstrate that RSPO1 is expressed in premature germ cells, in oogonia and primary oocytes in ovaries and in spermatogonia and spermatocytes in testes. It is also expressed in gonad somatic cells during gonadal development: in granulosa cells and theca cells of early and late cortical-alveolar stage follicles in ovaries, and in Leydig cells in testes. This differential expression may indicate that RSPO1 has a role(s) in zebrafish gonad development and differentiation. By fusing zebrafish RSPO1 with a green fluorescent protein gene, we found that RSPO1 is located in the cytosol and Golgi apparatus but not the nucleus of fish epithelioma papulosum cyprinid (EPC) cells. These preliminary findings suggest some aspects of RSPO1 like differential expression linked to sex determination may be conserved in fish while other aspects like subcellular localization differ from the mammalian RSPO1.  相似文献   

3.
Gonadal sex differentiation is increasingly recognized as a remarkably plastic process driven by species‐specific genetic or environmental determinants. Among aquatic vertebrates, gonadal sex differentiation is a frequent endpoint in studies of endocrine disruption with little appreciation of underlying developmental mechanisms. Work in model organisms has highlighted the diversity of master sex‐determining genes rather than uncovering any broad similarities prompting the highly conserved developmental decision of testes versus ovaries. Here we use molecular genetic markers of chromosomal sex combined with traditional histology to examine the transition of the bipotential gonads to ovaries or testes in threespine stickleback (Gasterosteus aculeatus). Serially‐sectioned threespine stickleback fry were analyzed for qualitative and quantitative indications of sexual differentiation, including changes in gonadal morphology, number of germ cells and the incidence of gonadal apoptosis. We show that threespine stickleback sampled from anadromous and lacustrine populations are differentiated gonochorists. The earliest sex‐specific event is a premeiotic increase in primordial germ cell number followed by a female‐specific spike in apoptosis in the undifferentiated gonad of genetic females. The data suggest that an increase in PGC number may direct the undifferentiated gonad toward ovarian differentiation. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

4.
Shortnose sturgeon Acipenser brevirostrum gonad samples were collected from industry-reared fish and wild broodstock at various developmental stages to elucidate patterns of gonadal differentiation and maturation. Genital ridges, containing germ cells, were present in 26 day-old fish and distinct gonads were present by day 54. Sturgeon gonads are known to consist of two tissue types (adipose and gametogenic) and both were present at 72 day. Anatomical differentiation of gonads occurred by 6 months and was advanced by 15 months. Ovaries had distinct lamellae while testes remained non-lamellate. Gonial proliferation had occurred by 15 months, but the cells were not identifiable as spermatogonia or oogonia. Small white 'pinhead' oocytes were macroscopically visible in ovaries as early as 36 months. At 43 months ovaries were clearly organized, with some areas containing only immature oocytes and other containing oocytes apparently developing as cohorts. Individual fish showed considerable variation: the level of development remained unchanged at 84 months in some females, while others showed clear progression towards sexual maturation at 48 months. Sperm cells were present in males as early as 52 months. Advanced development of ovarian follicles was observed only in biopsies of re-conditioned broodstock of wild origin. In the year before spawning, the most advanced oocytes became pigmented, the chorion thickened, the nucleus (germinal vesicle) migrated towards the micropyle complex at the animal pole, and ovulation occurred in May under appropriate environmental conditions.  相似文献   

5.
Gonadal biopsies of sea lamprey Petromyzon marinus larvae (118·5–142·5 mm) were examined quantitatively and categorized as ovaries, presumptive testes, or atypical gonads. Subsets of larvae were then killed 1, 2, 4, 8, 16 and 52 weeks following surgery at which time each larva was matched with its biopsy, and its gonad re–examined for quantifiable changes in composition. During 52 weeks, oocyte diameters increased significantly while numbers of oocytes per unit area significantly declined. Germ cell numbers remained within the range of typical presumptive testes. Overall abundance of typical ovaries decreased over the course of the experiment, whereas the number of presumptive testes increased. This was a direct result of presumptive testis development from atypical gonads, oocyte atresia and sex reversal. The results suggest an argument for environmental sex determination in lampreys, while indicating that they remain sexually labile throughout most of the larval period, despite primary differentiation.  相似文献   

6.
Juvenile zebrafish are hermaphroditic; undifferentiated gonads first develop into ovary-like tissues, which then either become ovaries and produce oocytes (female) or degenerate and develop into testes (male). In order to fully capture the dynamic processes of germ cells' proliferation and juvenile hermaphroditism in zebrafish, we established transgenic lines TG(beta-actin:EGFP), harboring an enhanced green fluorescent protein (EGFP) gene driven by a medaka beta-actin promoter. In TG(beta-actin:EGFP), proliferating germ cells and female gonads strongly expressed EGFP, but fluorescence was only dimly detected in male gonads. Based on the fluorescent (+) or nonfluorescent (-) appearance of germ cells seen in living animals, three distinct groups were evident among TG(beta-actin:EGFP). Transgenics in ++ group (44%) were females, had fluorescent germ cells as juveniles, and female gonads continuously fluoresced throughout sexual maturation. Transgenics in +- (23%) and -- (33%) groups were males. Fluorescent germ cells were transiently detected in +- transgenics from 14 to 34 days postfertilization (dpf), but were not detected in -- transgenics throughout their life span. Histological analyses showed that 26-dpf-old transgenics in ++, +-, and -- groups all developed ovary-like tissues: Germ cells in -- group juveniles arrested at the gonocyte stage and accumulated low quantities of EGFP, while those in ++ group juveniles highly proliferated into diplotene to perinucleolar stages and accumulated high quantities of EGFP. In +- group juveniles, degenerating oocytes, gonocytes, and spermatogonia were coexistent in transiently fluorescent gonads. Therefore, the fluorescent appearance of gonads in this study was synchronous with the differentiation of ovary-like tissues. Thus, TG(beta-actin:EGFP) can be used to visualize germ cells' proliferation and juvenile hermaphroditism in living zebrafish for the first time.  相似文献   

7.
Fetal mouse testes and ovaries with their urogenital connections were cultured singly or in pairs on Nuclepore filters. When a testis in which the sex was not yet morphologically detectable was cultured together with older ovaries containing germ cells which were progressing through the meiotic prophase, the male germ cells were triggered to enter meiosis. When older fetal testes in which the testicular cords have developed were cultured together with ovaries of the same age with germ cells in meiosis, the oocytes were prevented from reaching diplotene stage. It was concluded that the fetal male and female gonads secrete diffusable substances which influence germ cell differentiation. The male gonad secretes a "meiosis-preventing substance" (MPS) which can arrest the female germ cells within the meiotic prophase. The female gonad secretes a "meiosis-inducing substance" (MIS) which can trigger the nondifferentiated male germ cells to enter meiosis.  相似文献   

8.
Two Dascyllus reticulatus populations from Madang, Papua New Guinea exhibited diandric protogyny. In both populations, gonads began as undifferentiated, and then developed oocytes in the primary growth stage and an ovarian lumen. From this ovarian state or from more developed ovaries containing oocytes beyond the primary‐growth stage, some gonads developed into testes. The first sign of testicular development was degeneration of oocytes, degeneration of oocytes in the primary growth stage in ovarian gonads and degeneration of oocytes of all growth stages present including the primary growth stage in ovaries, which was then followed by development of spermatogenic tissue. In both populations, most of the fish that had gonads with degenerating oocytes were smaller than the smallest mature females, indicating that development towards testes was mostly initiated in immature gonads containing only pre‐vitellogenic oocytes. On some occasions, however, females as large as other mature females also had gonads with degenerating oocytes, suggesting that development towards testes may have occurred in mature ovaries as well. This latter notion is further strengthened by the discovery of a fish having a gonad that contained both degenerating vitellogenic oocytes and developing spermatogenic tissue. Taken together, these results suggest that D. reticulatus can exhibit diandric protogyny, because testes in D. reticulatus developed from juvenile gonads as well as from mature ovaries.  相似文献   

9.
The role of Anti-Müllerian hormone (Amh) during gonad development has been studied extensively in mammals, but is less well understood in other vertebrates. In male mammalian embryos, Sox9 activates expression of Amh, which initiates the regression of the Mullerian ducts and inhibits the expression of aromatase (Cyp19a1), the enzyme that converts androgens to estrogens. To better understand shared features of vertebrate gonadogenesis, we cloned amh cDNA from zebrafish, characterized its genomic structure, mapped it, analyzed conserved syntenies, studied its expression pattern in embryos, larvae, juveniles, and adults, and compared it to the expression patterns of sox9a, sox9b and cyp19a1a. We found that the onset of amh expression occurred while gonads were still undifferentiated and sox9a and cyp19a1a were already expressed. In differentiated gonads of juveniles, amh showed a sexually dimorphic expression pattern. In 31 days post-fertilization juveniles, testes expressed amh and sox9a, but not cyp19a1a, while ovaries expressed cyp19a1a and sox9b, but not amh. In adult testes, amh and sox9a were expressed in presumptive Sertoli cells. In adult ovaries, amh and cyp19a1a were expressed in granulosa cells surrounding the oocytes, and sox9b was expressed in a complementary fashion in the ooplasm of oocytes. The observed expression patterns of amh, sox9a, sox9b, and cyp19a1a in zebrafish correspond to the patterns expected if their regulatory interactions have been conserved with mammals. The finding that zebrafish sox9b and sox8 were not co-expressed with amh in oocytes excludes the possibility that amh expression in zebrafish granulosa cells is directly regulated by either of these two genes.  相似文献   

10.
The history of the germ cells is traced from the time of hatching. The germ cells are larger in size and have faintly staining cytoplasm, clear cell outline and a distinct nucleus. They migrate by ameboid movement to reach the genital ridge and aggregate to lie against the gonadal epithelium prior to the formation of gonads. The germ cells are distributed along the gonad primordia. The period of sex differentiation occurs between the 5.4 mm to 12 mm stage. The testis formation is recognized by the presence of germ cell nests and the sperm duct cord. The formation of the ovary is noted by the enlargement of the germ cells of uniform size and the development of the ovarian cavity. The ovaries are described in four stages ranging from 21 mm to 135 mm fish. At 21 mm stage the ovarian cavity is continuous but is obliterated at 35 mm stage due to the projection of the ovigerous lamellae. The common opening for both the ovaries develops at 35 mm stage. The testes are described in four stages ranging from 23 mm to 135 mm fish. They differentiate more slowly and the first maturation division is seen at 90 mm stage.  相似文献   

11.
A mutagenesis screen was conducted on zebrafish using N:-ethyl N:-nitrosourea as a mutagen and an F2 crossing scheme to obtain homozygous mutants in the F3 generation. Whole abdomens of 3-mo-old F3 zebrafish progeny were fixed and mass-embedded in paraffin blocks. Blocks were cut with a microtome to obtain cross-sections of the entire body cavity that included the ovaries and testes. Slides of the cross-sections were analyzed for alterations in gonadal structure and gametogenesis and were compared with gonads of wild-type fish. A total of 125 mutagenized genomes in 81 families were screened and 11 mutations were observed that produced visible phenotypes in only one sex per family. Male mutations included testes without mature sperm that contained either predominantly spermatocytes or spermatogonia. Female mutations included ovaries containing 1) degenerating oocytes surrounded by hypertrophied follicle walls or stroma, 2) extrafollicular tissue proliferation, 3) proliferating postovulatory follicle walls, and 4) large numbers of degenerating preovulatory and postovulatory oocytes. While past screens on zebrafish have concentrated on early developmental mutations, the results of this study demonstrate for the first time that mutagenesis can be used with zebrafish to study reproduction in adult animals.  相似文献   

12.
In order to obtain basic information about the role played by endogenous sex hormones in bringing about sex changes in the serial-sex changing gobiid fish Trimma okinawae, the gonadal structure of male and female phases were observed histologically. Steroid-producing cells (SPC; Leydig cells in a testis) were observed ultrastructurally in the ovaries and testes of both female-phase and male-phase fish. In addition, gonadal expression of P450 cholesterol side-chain-cleavage (scc) was examined immunohistochemically. Gonads of fish in female and male phases were observed to have both ovaries and testes simultaneously. Female-phase fish had matured with many developed vitellogenic oocytes, while male-phase individuals had immature ovaries with many numbers of previtellogenic oocytes at the perinucleolus stage. Testes of fish in different sexual phases had active spermatogenic germ cells. Organellae of SPC in the ovaries of female-phase fish had active structures of steroid production. In contrast, SPC in the ovaries of male-phase fish did not show active structures of steroid production. Immunopositive reactions against the scc antibody in the ovaries of female-phase fish were very strong, but immunoreactions in the ovaries of male-phase fish were very weak. In the testis, moderate immunopositive signals were obtained from dual-phase male/females.  相似文献   

13.
Piwi is necessary for germ stem cell survival in Drosophila and homologues have been identified in a diverse range of organisms. Here, we identify and characterize two homologous genes of piwi, Olpiwi1 and Olpiwi2, in the model fish medaka (Oryzias latipes). Olpiwi1 is similar to Ziwi in zebrafish or Miwi in the mouse, and Olpiwi2 is similar to Zili in zebrafish or Mili in the mouse. Moreover, Olpiwi2 mRNA is produced from two different chromosomes. RT-PCR showed expression of Olpiwi1 and Olpiwi2 predominantly in the gonads. In situ hybridization revealed germ cell-specific expression of Olpiwi1 and Olpiwi2 throughout the development of oocytes from oogonia to mature oocytes in the ovary, and from spermatogonia to spermatocytes in the testes of adults. RT-PCR and whole mount in situ hybridization showed that both Olpiwi1 and Olpiwi2 were maternally deposited in the embryo. Olpiwi1 and Olpiwi2 were detected in primordial germ cells during embryonic development. These results suggest that both Olpiwi1 and Olpiwi2 are germ cell specific, and may play important roles in germ cell development and gametogenesis in this model species.  相似文献   

14.
The honeycomb grouper shows protogynous hermaphroditism. The endocrine mechanisms involved in gonadal restructuring throughout protogynous sex change are largely unknown. In the present study, we investigated changes in the gonadal structures and levels of serum sex steroid hormones during female to male sex change in the honeycomb grouper. On the basis of histological changes, entire process of sex change was assigned into four developmental phases: female, early transition (ET), late transition (LT), and male phase. At the female phase, the oocytes of several developmental stages were observed including gonial germ cells in the periphery of ovigerous lamellae. At the beginning of ET phase, perinucleolar and previtellogenic oocytes began degenerating, followed by proliferation of spermatogonia toward the center of lamella. The LT phase was characterized by further degeneration of oocytes and rapid proliferation of spermatogenic germ cells throughout the gonad. At the male phase, no ovarian cells were observed and testis had germ cells undergoing active spermatogenesis. Serum levels of estradiol-17beta (E2) were high in females in the breeding season, but low in the non-breeding female, transitional and male phase, and those of 11-ketotestosterone (11-KT) and testosterone (T) were low in females and gradually increased in the transitional and male phase. The present results suggest that low serum E2 levels and degeneration of oocytes accompanied by concomitant increase in the 11-KT levels and proliferation of spermatogenic germ cells are probably the events mediating protogynous sex change in the honeycomb grouper.  相似文献   

15.
The histology of the gonad of the red sea bream,Pagrus major, was examined in order to study the early gonadal development, sexual maturation and sex ratio in a natural population. A total of 1,117 fish between the ages of 4 months and 8 years were examined. Gonads of 4-month-old fish were either sexually undifferentiated with a central cavity, or ovarian in form. Gonads of 12- and 18-month-old fish were ovaries or bisexual gonads, while those of 2-year-old fish were ovaries, bisexual gonads or testes. Fish aged between 3 and 8 years had ovaries or testes, except for a few bisexual gonads found in 3- and 4-year-old fish. The chronological appearance of females, hermaphrodites and males in that order, and histological evidence, suggested that the testis originates from the ovary via a bisexual gonad in the juvenile stage. The sex ratio of females to males at the age of 2 years and over was about 1:1, suggesting that hermaphroditic red sea bream appear in about 50% of the juvenile population. The sexual pattern in this species, therefore, is concluded to be gonochorism with a bisexual juvenile stage.  相似文献   

16.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

17.
18.
The phenotypic effects of a new recessive mutation mas −1, which in homozygous condition induces testicular development in XX animals of common carp ( Cyprinus carpio L.), are described. Sexual differentiation of XX; mas −+/ mas −1 and XX; mas −1/ mas −1 animals was compared with the gonad development of XX wild type females and XY males. In XX females gonadal differentiation starts with the formation of an ovarian cavity and entry into meiosis of germ cells at around 80 days post hatching (ph). Male gonads remain quiescent until 120 days ph during which period they develop a network of loose connective tissue. Spermatogenesis starts with tubule formation and the differentiation of germ cells into spermatogonia type B. Heterozygous XX; mas −+/ mas −1 animals developed as normal females, but in homozygous XX; mas −1/ mas −1 animals two types of gonad development were observed. In the first type, germ cells did not enter meiosis until 100 days ph when they differentiated as spermatogonia. An ovarian cavity was not formed but male specific connective tissue developed instead. These gonad developed as normal testes. In the second type, germ cells differentiated at 80 days ph as either oocytes or spermatocytes, which resulted in the gonads developing as ovotestes. The formation of an ovarian cavity was in most cases incomplete. The phenotypic effects of mas −1 are interpreted as a timing mismatch between mas activation and female sex differentiation.  相似文献   

19.
The aim of this study was to identify periods in zebrafish (Danio rerio) development when estrogen exposure has long-term consequences on reproductive capabilities at the adult stage. To this end, zebrafish were exposed to 10 ng/L ethynylestradiol (EE(2)) during three stages of gonadal differentiation: (i) the juvenile hermaphroditic stage when gonads display the morphology of an immature ovary (in our zebrafish colony this lasted from 15 to 42 days post-fertilization [dpf]), (ii) the gonad transition stage when the hermaphroditic gonad differentiates into either testes or ovary (from 43 to day 71 dpf), and (iii) the premature stage of testicular and ovarian development (from 72 to 99 dpf). The consequences of stage-specific exposure to EE(2) were assessed by determining time to first spawning, fecundity (number of eggs per female per day), fertilization success (percentage of fertilized eggs) and sex ratio of the adults. Exposure during the gonad transition period induced a delay in the onset of spawning and a significant reduction of fecundity and fertilization success, whereas exposure during the hermaphroditic stage or during the premature stage had no significant impact on the reproductive parameters of adult fish. The results from this experiment pointed to the gonad transition stage as being most susceptible to persistent effects of developmental estrogen exposure. In a second experiment, the concentration dependency of the EE(2)effects was evaluated by exposing zebrafish during the gonad transition stage (43-71 dpf) to 1.67, 3 or 10 ng EE(2)/L. Significant effects of EE(2) on adult reproduction were found with 3 and 10 ng EE(2)/L, but not with 1.67 ng/L. Histological examination of the gonads revealed that at termination of EE(2) exposure (71 dpf), all individuals in the 3 and 10 ng EE(2)/L treatment possessed ovaries. However, this feminising effect appeared to be reversible since at the adult stage (190 dpf), both fish with ovaries and with testes were found. Thus, EE(2) exposure during the gonad transition stage seems to have no persistent effect on gonad histology but on reproductive capabilities.  相似文献   

20.
All gonads of the Hawaiian dascyllus Dascyllus albisella , irrespective of the final sex of individuals, developed an ovarian lumen and primary-growth-stage oocytes after an initially undifferentiated state. From this ovarian state or from more differentiated ovaries, some gonads redifferentiated into testes. None of 117 individuals examined had a gonad containing degenerating vitellogenic oocytes and proliferating spermatogenic tissue. Eleven individuals had gonads containing degenerating cortical-alveolus-stage oocytes and developing spermatogenic tissue. The size of these individuals overlapped with the female size range in which the majority of the females were still in the middle of the maturation process. They were absent from the larger size range where the majority of females had vitellogenic oocytes. This indicated that the transition toward maleness is likely to have occurred after the onset of cortical-alveolus stage, but before final oocyte maturation and spawning as females. Therefore the protogynous pattern of gonadal development was non-functional. There was no dimorphism in the sperm duct configuration, and all the testes were secondary testes reported for diandric, protogynous species with undelimited gonads. Very early development of an ovarian lumen appeared to have resulted in a secondary-male configuration in all testes, although redifferentiation into males appeared to have occurred before sexual maturity and spawning as females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号