首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
Organelle origins and ribosomal RNA   总被引:8,自引:0,他引:8  
As the detailed molecular biology of organelle genomes has unfolded, there has been a general acceptance of the view that plastids and mitochondria are of endosymbiotic, eubacterial origin. Plastid genes are strikingly similar to their eubacterial (particularly cyanobacterial) counterparts in sequence, organization, and mode of expression, and such features strongly support the hypothesis that the plastid and its genome were derived in evolution from a blue-green alga-like endosymbiont. Mitochondria, on the other hand, are problematic: mitochondrial genes are organized and expressed in remarkably diverse ways in the different major groups of eukaryotes, and in no case are these features particularly characteristic of either bacterial or nuclear genomes. There is, however, clear evidence derived from gene sequence supporting the eubacterial ancestry of mitochondria, and some of the most compelling data have come from analyses of mitochondrial ribosomal RNA (rRNA). Plant mitochondrial rRNA genes diverge in sequence at a particularly slow rate, and these genes have proven to be especially supportive of the endosymbiont hypothesis, pointing to an origin of mitochondria from within the alpha subdivision of the purple bacteria. Ribosomal RNA sequences provide a basis for the construction of global phylogenetic trees that probe the evolutionary history of organelles, and that address the question of whether mitochondria and plastids are monophyletic or polyphyletic in origin. Such studies raise the possibility that the rRNA genes of plant mitochondria originated separately from the mitochondrial rRNA genes of other eukaryotes.  相似文献   

5.
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

6.
Odintsova MS  Iurina NP 《Genetika》2002,38(6):773-788
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

7.
Genomes at the interface between bacteria and organelles   总被引:1,自引:0,他引:1  
The topic of the transition of the genome of a free-living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear-cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free-living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have been made to culture the cyanobiont independently for the association to be considered obligate for the cyanobacterium. Plastids clearly had a cyanobacterial ancestor but cannot grow independently of the host eukaryote. Plastid genomes have at most 15% of the number of genes encoded by the cyanobacterium with the smallest number of genes; more genes than are retained in the plastid genome have been transferred to the eukaryote nuclear genome, while the rest of the cyanobacterial genes have been lost. Even the most cyanobacteria-like plastids, for example the "cyanelles" of glaucocystophyte algae, are functionally and genetically very similar to other plastids and give little help in indicating intermediates in the evolution of plastids. The third case considered is the vertically transmitted intracellular bacterial symbionts of insects where the symbiosis is usually obligate for both partners. The number of genes encoded by the genomes of these obligate symbionts is intermediate between that of organelles and that of free-living bacteria, and the genomes of the insect symbionts also show rapid rates of sequence evolution and AT (adenine, thymine) bias. Genetically and functionally, these insect symbionts show considerable similarity to organelles.  相似文献   

8.
9.
The ancestors of plastids and mitochondria were once free-living bacteria that became organelles as a result of endosymbiosis. According to this theory, a key bacterial division protein, FtsZ, plays a role in plastid division in algae and plants as well as in mitochondrial division in lower eukaryotes. Recent studies have shown that organelle division is a process that combines features derived from the bacterial division system with features contributed by host eukaryotic cells. Two nonredundant versions of FtsZ, FtsZ1 and FtsZ2, have been identified in green-lineage plastids, whereas most bacteria have a single ftsZ gene. To examine whether there is also more than one type of FtsZ in red-lineage chloroplasts (red algal chloroplasts and chloroplasts that originated from the secondary endosymbiosis of red algae) and in mitochondria, we obtained FtsZ sequences from the complete sequence of the primitive red alga Cyanidioschyzon merolae and the draft sequence of the stramenopile (heterokont) Thalassiosira pseudonana. Phylogenetic analyses that included known FtsZ proteins identified two types of chloroplast FtsZ in red algae (FtsZA and FtsZB) and stramenopiles (FtsZA and FtsZC). These analyses also showed that FtsZB emerged after the red and green lineages diverged, while FtsZC arose by the duplication of an ftsZA gene that in turn descended from a red alga engulfed by the ancestor of stramenopiles. A comparison of the predicted proteins showed that like bacterial FtsZ and green-lineage FtsZ2, FtsZA has a short conserved C-termmal sequence (the C-terminal core domain), whereas FtsZB and FtsZC, like the green-lineage FtsZ1, lack this sequence. In addition, the Cyanidioschyzon and Dictyostelium genomes encode two types of mitochondrial FtsZ proteins, one of which lacks the C-terminal variable domain. These results suggest that the acquisition of an additional FtsZ protein with a modified C terminus was common to the primary and secondary endosymbioses that produced plastids and that this also occurred during the establishment of mitochondria, presumably to regulate the multiplication of these organelles.  相似文献   

10.
Plastids of diatoms and other chromophytic algae have four surrounding membranes. In contrast to plastids of green algae, higher plants and red algae chromophytic cells are thought to have evolved by secondary endocytobiosis, i.e. by uptake of a eukaryotic photosynthetic organism by a eukaryotic host cell. This review gives a brief summary of the current views about the origin of diatom plastids and discusses possible mechanisms the cells might employ to transport nucleus-encoded plastid proteins into these organelles.  相似文献   

11.
Archibald JM 《Current biology : CB》2006,16(24):R1033-R1035
The nuclear genomes of photosynthetic eukaryotes are littered with genes derived from the cyanobacterial progenitor of modern-day plastids. A genomic analysis of Cyanophora paradoxa - a deeply diverged unicellular alga - suggests that the abundance and functional diversity of nucleus-encoded genes of cyanobacterial origin differs in plants and algae.  相似文献   

12.
Extrachromosomal DNA in the Apicomplexa.   总被引:8,自引:0,他引:8       下载免费PDF全文
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.  相似文献   

13.
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ~110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.  相似文献   

14.
The photorespiratory pathway was shown to be essential for organisms performing oxygenic photosynthesis, cyanobacteria, algae, and plants, in the present day O(2)-containing atmosphere. The identification of a plant-like 2-phosphoglycolate cycle in cyanobacteria indicated that not only genes of oxygenic photosynthesis but also genes encoding photorespiratory enzymes were endosymbiotically conveyed from ancient cyanobacteria to eukaryotic oxygenic phototrophs. Here, we investigated the origin of the photorespiratory pathway in photosynthetic eukaryotes by phylogenetic analysis. We found that a mixture of photorespiratory enzymes of either cyanobacterial or α-proteobacterial origin is present in algae and higher plants. Three enzymes in eukaryotic phototrophs clustered closely with cyanobacterial homologs: glycolate oxidase, glycerate kinase, and hydroxypyruvate reductase. On the other hand, the mitochondrial enzymes of the photorespiratory cycle in algae and plants, glycine decarboxylase subunits and serine hydroxymethyltransferase, evolved from proteobacteria. Other than most genes for proteins of the photosynthetic machinery, nearly all enzymes involved in the 2-phosphogylcolate metabolism coexist in the genomes of cyanobacteria and heterotrophic bacteria.  相似文献   

15.
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.  相似文献   

16.
Within plastid-bearing species, the relative rates of evolution between mitochondrial and plastid genomes are poorly studied, but for the few lineages in which they have been explored, including land plants and green algae, the mitochondrial DNA mutation rate is nearly always estimated to be lower than or equal to that of the plastid DNA. Here, we show that in protists from three distinct lineages with secondary, red algal-derived plastids, the opposite is true: their mitochondrial genomes are evolving 5-30 times faster than their plastid genomes, even when the plastid is nonphotosynthetic. These findings have implications for understanding the origins and evolution of organelle genome architecture and the genes they encode.  相似文献   

17.
18.
What factors drove the transformation of the cyanobacterial progenitor of plastids (e.g. chloroplasts) from endosymbiont to bona fide organelle? This question lies at the heart of organelle genesis because, whereas intracellular endosymbionts are widespread in both unicellular and multicellular eukaryotes (e.g. rhizobial bacteria, Chlorella cells in ciliates, Buchnera in aphids), only two canonical eukaryotic organelles of endosymbiotic origin are recognized, the plastids of algae and plants and the mitochondrion. Emerging data on (1) the discovery of non‐canonical plastid protein targeting, (2) the recent origin of a cyanobacterial‐derived organelle in the filose amoeba Paulinella chromatophora, and (3) the extraordinarily reduced genomes of psyllid bacterial endosymbionts begin to blur the distinction between endosymbiont and organelle. Here we discuss the use of these terms in light of new data in order to highlight the unique aspects of plastids and mitochondria and underscore their central role in eukaryotic evolution. BioEssays 29:1239–1246, 2007. © 2007 Wiley Periodicals, Inc.  相似文献   

19.
Plastids (the photosynthetic organelles of plants and algae) originated through endosymbiosis between a cyanobacterium and a eukaryote and subsequently spread to other eukaryotes by secondary endosymbioses between two eukaryotes. Mounting evidence favors a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their nonphotosynthetic relatives, termed chromalveolates), but so far, no single molecular marker has been described that supports this common origin. One piece of evidence comes from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrion-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts and found haptophyte homologs that branch within a strongly supported clade of chromalveolate plastid-targeted genes, being more closely related to an apicomplexan homolog than was expected. The evolution of plastid-targeted GAPDH supports red algal ancestry of apicomplexan plastids and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in nonphotosynthetic lineages such as ciliates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号