首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Lentinula (Lentinus) edodes , strain LS4, produces manganese-dependent peroxidase (MnP) and laccase, but not lignin peroxidase, when grown on a defined medium with glucose as sole carbon source. MnP production is suppressed by nitrogen whereas highest levels of laccase were observed when the fungus was grown under high nitrogen (26 mM) conditions. Both the titre and time of appearance of MnP were affected by the concentration of Mn in the culture medium with highest enzyme levels recorded in cultures supplemented with 1.1 ppm Mn. Purified MnP from L. edodes LS4 has an apparent M r of 59000 and a p I of 5.6, and differs in several respects from a MnP isolated from L. edodes grown on a commercial wood substrate.  相似文献   

2.
The ability of the white rot fungus Ceriporiopsis subvermispora to mineralize 14C-synthetic lignin was studied under different culture conditions, and the levels of two extracellular enzymes were monitored. The highest mineralization rates (28% after 28 days) were obtained in cultures containing a growth-limiting amount of nitrogen source (1.0 mM ammonium tartrate); under this condition, the levels of manganese peroxidase (MnP) and laccase present in the culture supernatant solutions were very low compared with cultures containing 10 mM of the nitrogen source. In contrast, cultures containing a limiting concentration of the carbon source (0.1% glucose) showed low levels of both enzymes and also very low mineralization rates compared with cultures containing 1% glucose. Cultures containing 11 ppm of Mn(II) showed a higher rate of mineralization than those containing 0.3 or 40 ppm of this cation. Levels of MnP and laccase were higher when 40 ppm of Mn(II) was used. Mineralization rates were slightly higher in cultures flushed daily with oxygen, whereas laccase levels were lower and MnP levels were approximately the same as in cultures maintained under an air atmosphere. The presence of 0.4 mM veratryl alcohol reduced both mineralization rates and MnP levels, without affecting laccase levels. Lignin peroxidase activity was not detected under any condition. Addition of purified lignin peroxidase to the cultures in the presence or absence of veratryl alcohol did not enhance mineralization rates significantly.  相似文献   

3.
Manganese supplementation of culture medium affected Phanerochaete flavido-alba FPL 106507 growth, glucose consumption and extracellular protein accumulation. Both the titre and time of detection of lignin peroxidase (LiP) were affected by manganese concentration in the medium, whereas with manganese peroxidase (MnP) only the titre was affected. In high Mn(II) containing cultures highest manganese peroxidase levels and a decrease in extracellular veratryl alcohol accumulation were observed. After FPLC a number of haemprotein peaks showing manganese peroxidase activity were detected in Mn(II) supplemented cultures. On the contrary, only haemprotein peaks of lignin peroxidase were detected in culture medium not supplemented with Mn(II).  相似文献   

4.
Extracellular ligninolytic enzyme activities were determined in two white-rot fungi, Bjerkandera adusta and Lentinus squarrosulus. To investigate the activity of extracellular enzymes, cultures were incubated over a period of 20 days in nutrient rich medium (NRM) and nutrient poor medium under static and shaking conditions. Enzymatic activity was varied with media and their incubation conditions. The highest level of Aryl alcohol oxidase (AAO) was detected under shaking condition of both medium while Manganese peroxidase (MnP) activity was best in NRM under both conditions. AAO is the main oxidases enzyme in B. adusta while laccase plays important role in L. squarrosulus. MnP is the main peroxidase enzyme in both varieties.  相似文献   

5.
Production of the oxidoreductive lignin-modifying enzymes – lignin and manganese peroxidases (MnPs), and laccase – of the white-rot basidiomycete Phlebia radiata was investigated in semi-solid cultures supplemented with milled grey alder or Norway spruce and charcoal. Concentrations of nutrient nitrogen and Cu-supplement varied also in the cultures. According to extracellular activities, production of both lignin peroxidase (LiP) and MnP was significantly promoted with wood as carbon source, with milled alder (MA) and low nitrogen (LN) resulting with the maximal LiP activities (550 nkat l−1) and noticeable levels of MnP (3 μkat l−1). Activities of LiP and MnP were also elevated on high nitrogen (HN) complex medium when supplemented with spruce and charcoal. Maximal laccase activities (22 and 29 μkat l−1) were obtained in extra high nitrogen (eHN) containing defined and complex media supplemented with 1.5 mM Cu2+. However, the nitrogen source, either peptone or ammonium nitrate and asparagine, caused no stimulation on laccase production without Cu-supplement. This is also the first report to demonstrate a new, on high Cu2+ amended medium produced extracellular laccase of P. radiata with pI value of 4.9, thereby complementing our previous findings on gene expression, and cloning of a second laccase of this fungus.  相似文献   

6.
The white rot fungus Trametes trogii strain BAFC 463 produced laccase, manganese peroxidase, lignin peroxidase and cellobiose dehydrogenase, as well as two hydrogen peroxide‐producing activities: glucose oxidizing activity and glyoxal oxidase. In high‐N (40 mM N) cultures, the titres of laccase, MnP and GLOX were 27 (6.55 U/ml), 45 (403.00 mU/ml)and 8 (32,14 mU/ml) fold higher, respectively, than those measured in an N‐limited medium. This is consistent with the fact that the ligninolytic system of T. trogii is expressed constitutively. Lower activities of all the enzymes tested were recorded upon decreasing the initial pH of the medium from 6.5 to 4.5. Adding veratryl alcohol improved GLOX production, while laccase activity was stimulated by tryptophan. Supplying Tween 80 strongly reduced the activity of both MnP and GLOX, but increased laccase production. The titre of MnP was affected by the concentration of Mn in the culture medium, the highest levels were obtained with 90 μM Mn (II). LiP activity, as CDH activity, were detected only in the mediumsupplemented with sawdust. In this medium, laccase production reached a maximum of 4.75 U/ml, MnP 747.60 mU/ml and GLOX 117.11 mU/ml. LiP, MnP and GLOX activities were co‐induced, attaining their highest levels at the beginning of secondary metabolism, but while MnP, laccase, GLOX and CDH activities were also present in the primary growth phase, LiP activity appears to beidiophasic. The simultaneous presence of high ligninolytic and hydrogen peroxide producing activities in this fungus makes it an attractive microorganism for future biotechnological applications.  相似文献   

7.
Pleurotus ostreatus No. 42 produced the ligninolytic enzymes, manganese peroxidase (MnP) and laccase, in agitation culture in glucose/peptone/wheat-bran medium. Formation of mycelial pellets 1-2 mm in diameter was essential for the production of MnP; and the concentration of dissolved oxygen in the culture medium greatly influenced the production of MnP, a concentration over 5 ppm being necessary for MnP production. The maximal activity of MnP was obtained on days 7-9 of culture, after the consumption of nutrient glucose. Introduction of oxygen from the start of the cultivation caused large pellet formation, which resulted in a low MnP activity level. P. ostreatus No. 42 produced two MnP isozymes in agitation culture. The major isozyme, F-2, was 36.4 kDa and had a pI of 3.95. The MnP characteristics, Km values, dependence on Mn2+ and optimum pH showed the similarity between this isozyme and MnP 3, which was produced under different culture conditions. Analysis of the N-terminal amino acid sequence indicated the close similarity of F-2 to MnP 3.  相似文献   

8.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

9.
Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of 14C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanerochaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen.  相似文献   

10.
The ligninolytic enzymes produced by the white rot fungus Phanerochaete sordida in liquid culture were studied. Only manganese peroxidase (MnP) activity could be detected in the supernatant liquid of the cultures. Lignin peroxidase (LiP) and laccase activities were not detected under a variety of different culture conditions. The highest MnP activity levels were obtained in nitrogen-limited cultures grown under an oxygen atmosphere. The enzyme was induced by Mn(II). The initial pH of the culture medium did not significantly affect the MnP production. Three MnP isozymes were identified (MnPI, MnPII, and MnPIII) and purified to homogeneity by anion-exchange chromatography followed by hydrophobic chromatography. The isozymes are glycoproteins with approximately the same molecular mass (around 45 kDa) but have different pIs. The pIs are 5.3, 4.2, and 3.3 for MnPI, MnPII, and MnPIII, respectively. The three isozymes are active in the same range of pHs (pHs 3.0 to 6.0) and have optimal pHs between 4.5 and 5.0. Their amino-terminal sequences, although highly similar, were distinct, suggesting that each is the product of a separate gene.  相似文献   

11.
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (Mr of 40,000 and 66,000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity (~100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

12.
Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of 14C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanerochaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen.  相似文献   

13.
14.
Summary The effect of various carbon and nitrogen sources on laccase, manganese-dependent peroxidase (MnP), and peroxidase production by two strains of Pleurotus ostreatus was investigated. The maximal laccase yield of P. ostreatus 98 and P. ostreatus 108 varied depending upon the carbon source from 5 to 62 U l−1 and from 55 to 390 U l−1, respectively. The highest MnP and peroxidase activities were revealed in medium supplemented by xylan. Laccase, MnP, and peroxidase activities of mushrooms decreased with supplementation of defined medium by inorganic nitrogen sources. Peptone followed by casein hydrolysate appeared to be the best nitrogen sources for laccase accumulation by both fungi. However, their positive effects on enzyme accumulation were due to a higher biomass production. The secretion of MnP and peroxidase by P. ostreatus 108 was stimulated with supplementation of casein hydrolysate to the control medium since the specific MnP and peroxidase activities increased 15-fold and 3.5-fold, respectively.  相似文献   

15.
16.
The effect of several laccase activity activators,such as ethanol (novel activator), veratryl alcohol, melanin production and aeration level, on the laccase production by Trametes versicolor (CBS100.29) was investigated. The microorganism was cultivated on nylon sponge, functioning as a physical support on which the mycelium was bound. The cultures with veratryl alcohol showed maximum laccase and manganese‐dependent peroxidase (MnP) activities of 238 U/l and 125 U/l, respectively. The laccase activity found is about two times higher than that attained in the control cultures. On the contrary, MnP activity did not appear to be influenced by the addition of this alcohol. Ethanol‐supplemented cultures led to maximum laccase and MnP activity levels of about 102 U/l and 101 U/l, respectively. These activities were approx. 40% lower than those achieved in the reference cultures. The decolourization of the polymeric dye Poly R‐478 by the above‐mentioned cultures was also investigated. A percentage of biological decolourization of around 90% was achieved with control and veratryl alcohol‐supplemented cultures, whereas with ethanol‐supplemented cultures a slightly lower percentage of around 85% was reached after seven days of dye incubation.  相似文献   

17.
Pleurotus sp. was grown in liquid medium and on a solid straw substrate, and activities of laccase and manganese-dependent peroxidase (MnP) were recorded. The activities were the highest in a rich, glucose corn-steep liquid medium. In straw cultures, laccase activity was about ten times lower. Under solid state conditions, MnP production was the highest during days 20–40, when laccase activity already had declined. In straw cultures, mineralization of14C-pyrene was measured as release of14CO2. The highest rates of pyrene mineralization occurred during days 20–45,i.e. the period of high MnP activities, suggesting a role of this enzyme in PAH degradation. Within 60d, 24% of pyrene was mineralized.  相似文献   

18.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   

19.
Production of ligninolytic enzymes by three strains of the white rot fungus Phlebia tremellosa (syn. Merulius tremellosus) was studied in bioreactor cultivation under nitrogen-limiting conditions. The Mn(II) concentration of the growth medium strongly affected the secretion patterns of lignin peroxidase and laccase. Two major lignin peroxidase isoenzymes were expressed in all strains. In addition, laccase and glyoxal oxidase were purified and characterized in one strain of P. tremellosa. In contrast, manganese peroxidase was not found in fast protein liquid chromatography profiles of extracellular proteins under either low (2.4 μM) or elevated (24 and 120 μM) Mn(II) concentrations. However, H2O2- and Mn-dependent phenol red-oxidizing activity was detected in cultures supplemented with higher Mn(II) levels. Mineralization rates of 14C-ring-labelled synthetic lignin (i.e., dehydrogenation polymerizate) by all strains under a low basal Mn(II) level were similar to those obtained for Phanerochaete chrysosporium and Phlebia radiata. A high manganese concentration repressed the evolution of 14CO2 even when a chelating agent, sodium malonate, was included in the medium.  相似文献   

20.
Production of ligninolytic enzymes by three strains of the white rot fungus Phlebia tremellosa (syn. Merulius tremellosus) was studied in bioreactor cultivation under nitrogen-limiting conditions. The Mn(II) concentration of the growth medium strongly affected the secretion patterns of lignin peroxidase and laccase. Two major lignin peroxidase isoenzymes were expressed in all strains. In addition, laccase and glyoxal oxidase were purified and characterized in one strain of P. tremellosa. In contrast, manganese peroxidase was not found in fast protein liquid chromatography profiles of extracellular proteins under either low (2.4 muM) or elevated (24 and 120 muM) Mn(II) concentrations. However, H(2)O(2)- and Mn-dependent phenol red-oxidizing activity was detected in cultures supplemented with higher Mn(II) levels. Mineralization rates of C-ring-labelled synthetic lignin (i.e., dehydrogenation polymerizate) by all strains under a low basal Mn(II) level were similar to those obtained for Phanerochaete chrysosporium and Phlebia radiata. A high manganese concentration repressed the evolution of CO(2) even when a chelating agent, sodium malonate, was included in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号