首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Different sarco/endoplasmic reticulum Ca(2+)-ATPases isoforms are found in blood platelets and in skeletal muscle. The amount of heat produced during ATP hydrolysis by vesicles derived from the endoplasmic reticulum of blood platelets was the same in the absence and presence of a transmembrane Ca(2+) gradient. Addition of platelets activating factor (PAF) to the medium promoted both a Ca(2+) efflux that was arrested by thapsigargin and an increase of the yield of heat produced during ATP hydrolysis. The calorimetric enthalpy of ATP hydrolysis (DeltaH(cal)) measured during Ca(2+) transport varied between -10 and -12 kcal/mol without PAF and between -20 and -24 kcal/mol with 4 microM PAF. Different from platelets, in skeletal muscle vesicles a thapsigargin-sensitive Ca(2+) efflux and a high heat production during ATP hydrolysis were measured without PAF and the DeltaH(cal) varied between -10 and -12 kcal/mol in the absence of Ca(2+) and between -22 up to -32 kcal/mol after formation of a transmembrane Ca(2+) gradient. PAF did not enhance the rate of thapsigargin-sensitive Ca(2+) efflux nor increase the yield of heat produced during ATP hydrolysis. These findings indicate that the platelets of Ca(2+)-ATPase isoforms are only able to convert osmotic energy into heat in the presence of PAF.  相似文献   

3.
The synthetic antioxidants butylated hydroxytoluene (BHT), nordihydroguaiaretic acid and the one-electron donor 1,1'-dimethylferrocene, inhibit cytosolic Ca++ increase, shape change, aggregation and ATP secretion in aspirinated washed human platelets stimulated by thrombin, vasopressin and platelet-activating factor. The antioxidants also inhibit cytosolic Ca++ increase originating from intracellular stores in the presence of EGTA. The effect of phorbol ester (TPA), which promotes platelet aggregation and secretion without raising the cytosolic Ca++, is also antioxidant-sensitive. Since agonist activation of aspirinated platelets does not involve cyclooxygenase or lipoxygenase metabolites, it is suggested that other yet unknown free radical-dependent pathways are involved in the mechanism of platelet activation, both in the protein kinase C-independent events leading to the cytosolic Ca++ increase, and in those, largely protein kinase C-dependent, leading to aggregation and ATP secretion.  相似文献   

4.
Human platelets exposed to ionomycin, a Ca2+ ionophore, exhibit activation of both phospholipases A2 and C. Such platelets manifest a rise in cytoplasmic Ca2+ (monitored by quin 2), a loss in phosphoinositides, formation of lysophosphatidylinositol, thromboxane B2, phosphatidic acid, and phosphorylated 47 kilodalton protein, and secretion. In the absence of thromboxane formation and secreted ADP, phospholipase C is not activated and the 47 kilodalton protein is not phosphorylated. The elevation in Ca2+ is unaffected by inhibition of cyclooxygenase and ADP. Thus, an increase in cytoplasmic Ca2+ is not sufficient to stimulate phospholipase C. Further, secretion can occur in the absence of phospholipase C activation and 47 kilodalton protein phosphorylation.  相似文献   

5.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

6.
The intracellular Ca2+ thresholds for platelet shape change and aggregation by A23187 and palmitoyl lysophosphatidic acid were approximately 350 and 750 nM, respectively, as estimated using quin2. The similar thresholds for these two agonists imply they activate platelets through a similar mechanism. In the absence of cyclooxygenase inhibitors, both agents induce the formation of [3H]inositol phosphates, reflecting the activation of phospholipase C. This activation of phospholipase C is blocked by the cyclooxygenase inhibitor indomethacin. It is suggested that platelet activation by palmitoyl lysophosphatidic acid involves an initial mobilization of intracellular Ca2+ with subsequent activation of phospholipase A2; the arachidonic acid metabolites formed then stimulate phospholipase C.  相似文献   

7.
We have observed that the addition of Ca2+ to platelets, permeabilized with saponin, promotes a drastic dephosphorylation of proteins and polyphosphoinositides without inducing platelet responses. Subsequent addition of thrombin could promote secretion of serotonin and aggregation in the absence of phospholipase C-induced breakdown of the inositol phospholipids and protein phosphorylation. This information indicates that activation of saponized platelets by thrombin is independent of the formation of second messengers derived from the phospholipase C-induced breakdown of the inositol phospholipids. The implications of this result for intact platelets are discussed.  相似文献   

8.
The ATP4- receptor of rat mast cells.   总被引:15,自引:4,他引:11       下载免费PDF全文
The concentration-dependence on exogenous ATP of activation and inhibition of mast-cell histamine secretion, phosphatidylinositol labelling and leakage of metabolites shows that all these functions are regulated by the free acid ATP4-. Maximal histamine secretion and phosphatidylinositol labelling occur with ATP4- at approx. 2 microM, but higher concentrations, which cause inhibition of secretion and phosphatidylinositol labelling, are required to maximize leakage of 32P-labelled metabolites. Both enhancement and inhibition of phosphatidylinositol labelling (due to low and high concentrations of ATP4- respectively) are rapid in onset; histamine secretion is characterized by a delay, especially at low concentrations of ATP4- (approx. 1 microM). Phosphatidylinositol labelling and histamine secretion are dependent on extracellular Ca2+. Metabolite leakage due to the presence of exogenous ATP4- is slow and does not require Ca2+. Of 18 analogues of ATP that were tested, only four were agonists for secretion, and only these four permitted leakage of 32P-labelled metabolites. It is argued that activation and inhibition of histamine secretion, phosphatidylinositol labelling and metabolite leakage are all initiated by ATP4- acting at the same receptor. For mast cells stimulated with ATP4- enhancement of phosphatidylinositol metabolism is not sufficient by itself to cause Ca2+-dependent secretion.  相似文献   

9.
In order to better understand granule release from platelets, we developed an alpha-toxin permeabilized platelet model to study alpha-granule secretion. Secretion of alpha-granules was analyzed by flow cytometry using P-selectin as a marker for alpha-granule release. P-selectin surface expression occurred when platelets were permeabilized in the presence of Ca2+. Responsiveness to Ca2+ was lost 30 min after permeabilization but could be reconstituted with MgATP. Alpha-toxin-permeabilized, MgATP-exposed platelets also degranulated within a pH range of 5.4-5.9 without exposure to and independent of Ca2+. ATP, GTP, CTP, UTP, and ITP supported Ca2+-induced alpha-granule secretion, while H+-induced alpha-granule secretion occurred only with ATP and GTP. Both Ca2+- and H+-induced alpha-granule secretion required ATP hydrolysis. Kinase inhibitors blocked both Ca2+- and H+-induced secretion. These data suggest that alpha-granule secretion in this permeabilized platelet system shares many characteristics with granule secretion studied in other permeabilized cell models. Furthermore, these results show that H+ can trigger alpha-granule release independent of Ca2+.  相似文献   

10.
In order to better understand the molecular mechanisms of platelet granule secretion, we evaluated the effect of activation-induced degranulation on three functional platelet SNARE proteins, SNAP-23, VAMP-3, and syntaxin 4. Initial studies showed that SNAP-23 is lost upon SFLLRN-induced platelet activation. Experiments with permeabilized platelets demonstrated that proteolysis of SNAP-23 was Ca(2+)-dependent. Ca(2+)-dependent proteolysis of SNAP-23 was inhibited by the cell-permeable calpain inhibitors, calpeptin and E-64d, as well as by the naturally occurring calpain inhibitor, calpastatin. In addition, purified calpain cleaved SNAP-23 in permeabilized platelets in a dose-dependent manner. In intact platelets, calpeptin prevented SFLLRN-induced degradation of SNAP-23. In contrast, calpeptin did not prevent SFLLRN-induced degradation of VAMP-3 and syntaxin 4 did not undergo substantial proteolysis following platelet activation. Calpain-induced cleavage of SNAP-23 was a late event occurring between 2.5 and 5 min following exposure of permeabilized platelets to Ca(2+). Experiments evaluating platelet alpha-granule secretion demonstrated that incubation of permeabilized platelets with 10 microM Ca(2+) prior to exposure to ATP inhibited ATP-dependent alpha-granule secretion from permeabilized platelets. SNAP-23 was cleaved under these conditions. Incubation of permeabilized platelets with either calpeptin or calpastatin prevented Ca(2+)-mediated degradation of SNAP-23 and reversed Ca(2+)-mediated inhibition of ATP-dependent alpha-granule secretion. Thus, activation of calpain prior to secretion results in loss of SNAP-23 and inhibits alpha-granule secretion. These studies suggest a mechanism whereby calpain activation serves to localize platelet secretion to areas of thrombus formation.  相似文献   

11.
After human platelets have been rendered permeable to small molecules by high voltage electric discharges, addition of buffered micromolar concentrations of Ca2+ causes an ATP-dependent secretion of dense granule serotonin [Knight & Scrutton (1980) Thromb. Res. 20, 437-446]. In the present study, platelets permeabilized by this technique were found to show an up to 10-fold increase in their sensitivity to Ca2+ after exposure to thrombin. In permeabilized platelets, as in the intact cells, release of serotonin was associated with the Ca2+-dependent phosphorylation of 47 000 and 20 000 Da polypeptides (P47 and P20). Thrombin markedly increased the phosphorylation of P47 in the presence of 0.1-1.0 microM-Ca2+ free but had a much smaller effect on phosphorylation of P20. Thrombin also stimulated the formation of 1,2-diacylglycerol in the presence of 0.1 microM-Ca2+ free and was even more effective with 1.0 microM-Ca2+ free, suggesting that receptor-activated hydrolysis of phosphoinositides to 1,2-diacylglycerol was preserved in permeabilized platelets and was potentiated by low intracellular concentrations of Ca2+. The increase in phosphorylation of P47 on addition of thrombin may therefore be accounted for by the stimulatory action of 1,2-diacylglycerol on Ca2+-activated, phospholipid-dependent protein kinase. However, in both the presence and absence of thrombin, higher Ca2+ concentrations were required for optimal secretion than for maximal phosphorylation of both P47 and P20, indicating that additional actions of Ca2+ and thrombin, perhaps also mediated by 1,2-diacylglycerol formation, may be involved in the release of serotonin.  相似文献   

12.
It has been proposed that cyclic AMP inhibits platelet reactivity: by preventing agonist-induced phosphoinositide hydrolysis and the resultant formation of 1,2-diacylglycerol and elevation of cytosolic free Ca2+ concentration [( Ca2+]i); by promoting Ca2+ sequestration and/or extrusion; and by suppressing reactions stimulated by (1,2-diacylglycerol-dependent) protein kinase C and/or Ca2+-calmodulin-dependent protein kinase. We used the adenylate cyclase stimulant prostaglandin D2 to compare the sensitivity to cyclic AMP of the transduction processes (phosphoinositide hydrolysis and elevation of [Ca2+]i) and functional responses (shape change, aggregation and ATP secretion) that are initiated after agonist-receptor combination on human platelets. Prostaglandin D2 elicited a concentration-dependent elevation of platelet cyclic AMP content and inhibited platelet-activating-factor(PAF)-induced ATP secretion [I50 (concn. causing 50% inhibition) approximately 2 nM], aggregation (I50 approximately 3 nM), shape change (I50 approximately 30 nM), elevation of [Ca2+]i (I50 approximately 30 nM) and phosphoinositide hydrolysis (I50 approximately 10 nM). A 2-fold increase in cyclic AMP content resulted in abolition of PAF-induced aggregation and ATP secretion, whereas maximal inhibition of shape change, phosphoinositide hydrolysis and elevation of [Ca2+]i required a greater than 10-fold elevation of the cyclic AMP content. This differential sensitivity of the various responses to inhibition by cyclic AMP suggests that the mechanisms underlying PAF-induced aggregation and ATP secretion differ from those underlying shape change. Thus a major component of the cyclic AMP-dependent inhibition of PAF-induced platelet aggregation and ATP secretion is mediated by suppression of certain components of the activation process that occur distal to the formation of DAG or elevation of [Ca2+]i.  相似文献   

13.
The Ca2+ ionophore A23187 (0.2-5 microM) stimulates the phosphorylation of the substrates of protein kinase C (40,000 dalton protein) and myosin light chain kinase (20,000 dalton protein) in the presence or absence of cyclooxygenase inhibitors. In the presence of cyclooxygenase inhibitors or millimolar Ca2+ there is no stimulation of phospholipase C by A23187. Fingerprints of the 32P-labeled 40,000 dalton protein isolated from platelets that have been stimulated with A23187, thrombin, phorbol 12,13-dibutyrate and 1,2-didecanoylglycerol were identical. Higher concentrations of A23187 (1-5 microM) induced the loss of polyphosphoinositides through phosphomonoesterase activity.  相似文献   

14.
The addition of arachidonic acid induced a rapid release of 45Ca2+ from human platelet membrane vesicles which accumulated 45Ca2+ in the presence of ATP. Docosahexaenoic acid, eicosapentaenoic acid, linolenic acid and linoleic acid were less active than arachidonic acid. In contrast, oleic acid, myristic acid and palmitic acid were without effect. The thromboxane A2 analogue induced no 45Ca2+ release. The cyclooxygenase/lipoxygenase inhibitor failed to suppress arachidonic acid-induced 45Ca2+ release at the concentration which inhibited the production of lipid peroxides. These data indicate that the activity of arachidonic acid may be due to fatty acid itself and not to its metabolites. The combination of arachidonic acid and inositol 1,4,5-trisphosphate (IP3) resulted in a greater 45Ca2+ release from platelet membrane vesicles than either compound alone. When the intracellular free Ca2+ concentration ([Ca2+]i) was measured using fura-2, the thrombin-induced [Ca2+]i increase was reduced in platelets which had been treated with a phospholipase A2 inhibitor, ONO-RS-082 (2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid). These results provide evidence that arachidonic acid alone may cause Ca2+ increase and also may induce an additional Ca2+ mobilization to IP3-induced Ca2+ release in human platelets.  相似文献   

15.
Human platelets incubated with [32P]Pi and [3H]arachidonate were transferred to a Pi-free Tyrode's solution by gel filtration. The labile phosphoryl groups of ATP and ADP as well as Pi in the metabolic pool of these platelets had equal specific radioactivity which was identical to that of[32P]phosphatidate formed during treatment of the cells with thrombin for 5 min. Therefore, the 32P radioactivity of phosphatidate was a true, relative measure for its mass. The thrombin-induced formation of[32P]-phosphatidate had the same time course and dose-response relationships as the concurrent secretion of acid hydrolases. 125I-alpha-Thrombin bound maximally to the platelets within 13s and was rapidly dissociated from the cells by hirudin; readdition of excess 125I-alpha-thrombin caused rapid rebinding of radioligand. This binding-dissociation-rebinding sequence was paralleled by a concerted start-stop-restart of phosphatidate formation and acid hydrolase secretion. [3H]Phosphatidylinositol disappearance was initiated upon binding but little affected by thrombin dissociation and rebinding. ATP deprivation caused similar changes in the time courses for [32P]-phosphatidate formation and acid hydrolase secretion which were different from those of [3H]phosphatidylinositol disappearance. The metabolic stress did not alter the magnitude (15%) of the initial decrease in phosphatidylinositol-4,5-bis[32P]phosphate, but did abolish the subsequent increase of phosphatidylinositol-4,5-bis[32P]-phosphate in the thrombin-treated platelets. It is concluded that in thrombin-treated platelets (1) phosphatidate synthesis, but not phosphatidylinositol disappearance, is tightly coupled to receptor occupancy and acid hydrolase secretion in platelets, (2) successive phosphorylations to phosphatidylinositol-4,5-bisphosphate is unlikely to be the main mechanism for phosphatidylinositol disappearance, and (3) only a small fraction (15%) of phosphatidylinositol-4,5-bisphosphate is susceptible to hydrolysis.  相似文献   

16.
Adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was used to examine the role of phosphorylation in the regulation of norepinephrine secretion by digitonin-permeabilized PC12 cells. While most kinases will use ATP gamma S to thiophosphorylate proteins, thiophosphorylated proteins are relatively resistant to dethiophosphorylation by protein phosphatases. Norepinephrine secretion by permeabilized PC12 cells was ATP- and Ca2+-dependent but resistant to calmodulin antagonists. Half-maximum secretion was obtained in 0.75 microM Ca2+. Permeabilized PC12 cells were incubated with ATP gamma S in the absence of Ca2+, the ATP gamma S was removed, and norepinephrine secretion was determined. Preincubation with ATP gamma S increased the amount of norepinephrine secreted in the absence of Ca2+, but it had no effect on the amount released in the presence of Ca2+. After a 15-min preincubation in 1 mM ATP gamma S, there was almost as much secretion in the absence of Ca2+ as in its presence. Inclusion of ATP in the preincubation inhibited the effect of ATP gamma S. Ca2+ stimulated the rate of modification by ATP gamma S as brief preincubations with ATP gamma S in the presence of Ca2+ resulted in higher levels of Ca2+-independent secretion than did preincubations with ATP gamma S in the absence of Ca2+. Similarly, brief preincubations of permeabilized cells with ATP in the presence of Ca2+ resulted in elevated levels of Ca2+-independent secretion. Secretion of norepinephrine from ATP gamma S-treated cells was ATP-dependent. These results suggest that norepinephrine secretion by PC12 cells is regulated by a Ca2+-dependent phosphorylation. Once this phosphorylation has occurred, secretion is still ATP-dependent, but it no longer requires Ca2+.  相似文献   

17.
We directly manipulated the levels of PtdIns, PtdInsP and PtdInsP2 in digitonin-treated adrenal chromaffin cells with a bacterial phospholipase C (PLC) from Bacillus thuringiensis and by removal of ATP. The PtdIns-PLC acted intracellularly to cause a large decrease in [3H]inositol- or [32P]phosphate-labelled PtdIns, but did not directly hydrolyse PtdInsP or PtdInsP2. [3H]PtdInsP and [3H]PtdInsP2 levels declined markedly, probably because of the action of phosphatases in the absence of synthesis. Removal of ATP also caused marked decreases in [3H]PtdInsP and [3H]PtdInsP2. The decrease in polyphosphoinositide levels by PtdIns-PLC treatment or ATP removal was reflected by the inhibition of the production of inositol phosphates upon subsequent activation of the endogenous PLC by Ca2(+)-dependent catecholamine secretion from permeabilized cells was strongly inhibited by PtdIns-PLC treatment and by ATP removal. Ca2(+)-dependent secretion was similarly correlated with the sum of PtdInsP and PtdInsP2 when the level of these lipids was changed by either manipulation. PtdIns-PLC inhibited only the ATP-dependent component of secretion and did not affect ATP-dependent secretion. Both PtdIns-PLC and ATP removal inhibited the late slow phase of secretion, but had little effect on the initial rapid phase. Although we found a tight correlation between polyphosphoinositide levels and secretion, endogenous phospholipase C activity (stimulated by Ca2+, guanine nucleotides and related agents) was not correlated with secretion. Additional experiments indicated that neither the products of the PtdIns-PLC reaction (diacylglycerol and InsP1) nor the inability to generate products by subsequent activation of the endogenous PLC is likely to account for the inhibition of secretion. Incubation of permeabilized cells with neomycin in the absence of ATP maintained the level of polyphosphoinositides and more than doubled subsequent Ca2(+)-dependent secretion. The data suggest that: (1) Ca2(+)-dependent secretion has a requirement for the presence of inositol phospholipids; (2) the enhancement of secretion by ATP results in part from increased polyphosphoinositide levels; and (3) the role for inositol phospholipids in secretion revealed in these experiments is independent of their being substrates for the generation of diacylglycerol and InsP3.  相似文献   

18.
Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization.  相似文献   

19.
Although HHT accounts for approximately one third of the arachidonic acid (AA) metabolites produced by stimulated platelets, no well defined function has been attributed to this product. We report that HHT stimulates prostacyclin production by endothelial cells, and have identified the mechanism for this effect. In human umbilical venous endothelial cells, HHT (0.5 and 1 microM) stimulated prostacyclin (RIA for 6KPGF1 alpha) by 32 +/- 22% (1SD) and 42 +/- 38% (P less than 0.05 and less than 0.01). Similar changes were observed when the effect of HHT on exogenous [1-14C] AA metabolism in fetal bovine aortic endothelial cells (FBAECs) was studied. Kinetic analyses revealed that HHT affected vascular cyclooxygenase. HHT (1 microM) increased Vmax in test microsomes (706 +/- 21 pmol/mg/min, mean +/- 1SE) when compared to controls (529 +/- 20; P less than 0.02). No concomitant effect on Km was observed. A further effect of HHT on AA release from endothelial cell membrane phospholipids was noted. Prelabeling experiments revealed that HHT (1 microM) increased the ionophore stimulated release of AA from FBAECs (20952 +/- 555 cpm/well control mean +/- 1SE vs 25848 +/- 557 for paired HHT treated cells; P less than 0.05). The effect of HHT on platelet AA metabolism was next studied. Preincubation of washed platelets with HHT (1 microM) did not enhance thrombin or arachidonic acid induced platelet TXB2 formation. In platelets prelabelled with [1-14C]AA, HHT (1 microM) had no effect on AA release post thrombin stimulation. Conversion to cyclooxygenase metabolites was also not enhanced. HHT stimulates vascular prostacyclin without a concomitant effect on platelet AA metabolism. HHT may thus be an important local modulator of platelet plug formation.  相似文献   

20.
Protein phosphorylation in permeabilized pancreatic islet cells.   总被引:4,自引:4,他引:0       下载免费PDF全文
A system of digitonin-permeabilized islet cells was developed to characterize Ca2+- and calmodulin-dependent protein phosphorylation further and to determine whether activation of this membrane-bound process was sufficient for initiation of Ca2+-stimulated insulin secretion. The efficacy of digitonin in permeabilizing the plasma membrane was assessed by Trypan Blue exclusion, by extracellular leakage of lactate dehydrogenase, and by permeability to [gamma-32P]ATP. This treatment did not detectably alter the ultrastructure of the permeabilized cells. Digitonin was equally effective when presented to islet cells that had been previously dispersed or directly to intact isolated islets. The Ca2+- and calmodulin-dependent phosphorylation of endogenous membrane-bound substrates could be demonstrated in the permeabilized cells incubated with [gamma-32P]ATP. This activity displayed characteristics that were similar to those described for the protein kinase measured in subcellular fractions and was dependent on addition of exogenous calmodulin, indicating that calmodulin had been removed from the kinase by permeabilization of the cells. Ca2+-dependent insulin release by the digitonin-permeabilized islet was demonstrated, with half-maximal release occurring at 0.1 microM-free Ca2+ and maximal secretion at 0.2 microM-free Ca2+. Under these conditions, calmodulin did not further enhance insulin release, although a stimulatory effect of calmodulin was observed in the absence of free Ca2+. These studies indicate that the permeabilized-islet model will be useful in dissecting out the factors involved in Ca2+-activated insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号