首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Inbred mouse strains are used in different models of respiratory diseases but the variation of critical respiratory leukocyte subpopulations across different strains is unknown.

Methods

By using multiparameter flow cytometry we have quantitated respiratory leukocyte subsets including dendritic cells subpopulations, macrophages, classical T and B cells, natural killer cells, γδTCR+ T cells and lineage-negative leukocytes in the five most common inbred mouse strains BALB/c, C57BL/6, DBA/2, 129SV and C3H. To minimize confounding environmental factors, age-matched animals were received from the same provider and were housed under identical specific-pathogen-free conditions.

Results

Results revealed significant strain differences with respect to respiratory neutrophils (p=0.005; up to 1.4 fold differences versus C57BL/6 mice), eosinophils (p=0.029; up to 2.7 fold), certain dendritic cell subsets (p≤0.0003; up to 3.4 fold), T (p<0.001; up to 1.6 fold) and B lymphocyte subsets (p=0.005; up to 0.4 fold), γδ T lymphocytes (p=0.003; up to 1.6 fold), natural killer cells (p<0.0001; up to 0.6 fold) and lineage-negative innate leukocytes (p≤0.007; up to 3.6 fold). In contrast, total respiratory leukocytes, macrophages, total dendritic cells and bronchoalveolar lavage leukocytes did not differ significantly. Stimulation of respiratory leukocytes via Toll-like receptor 4 and 9 as well as CD3/CD28 revealed significant strain differences of TNF-α and IL-10 production.

Conclusion

Our study demonstrates significant strain heterogeneity of respiratory leukocyte subsets that may impact respiratory immunity in different disease models. Additionally, the results may help identification of optimal strains for purification of rare respiratory leukocyte subsets for ex vivo analyses.  相似文献   

2.

Background

Secreted Protein Acidic and Rich in Cysteine (SPARC) is expressed during tissue repair and regulates cellular proliferation, migration and cytokine expression. The aim was to determine if SPARC modifies intestinal inflammation.

Methods

Wild-type (WT) and SPARC-null (KO) mice received 3% dextran sodium sulphate (DSS) for 7 days. Inflammation was assessed endoscopically, clinically and histologically. IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-12/IL23p40, TNF-α, IFN-γ, RANTES, MCP-1, MIP-1α, MIP-1β, MIG and TGF-β1 levels were measured by ELISA and cytometric bead array. Inflammatory cells were characterised by CD68, Ly6G, F4/80 and CD11b immunofluorescence staining and regulatory T cells from spleen and mesenteric lymph nodes were assessed by flow cytometry.

Results

KO mice had less weight loss and diarrhoea with less endoscopic and histological inflammation than WT animals. By day 35, all (n = 13) KO animals completely resolved the inflammation compared to 7 of 14 WT mice (p<0.01). Compared to WTs, KO animals at day 7 had less IL1β (p = 0.025) and MIG (p = 0.031) with higher TGFβ1 (p = 0.017) expression and a greater percentage of FoxP3+ regulatory T cells in the spleen and draining lymph nodes of KO animals (p<0.01). KO mice also had fewer CD68+ and F4/80+ macrophages, Ly6G+ neutrophils and CD11b+ cells infiltrating the inflamed colon.

Conclusions

Compared to WT, SPARC KO mice had less inflammation with fewer inflammatory cells and more regulatory T cells. Together, with increased TGF-β1 levels, this could aid in the more rapid resolution of inflammation and restoration of the intestinal mucosa suggesting that the presence of SPARC increases intestinal inflammation.  相似文献   

3.

Background

Rhinoviruses (RV) are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age.

Methods

Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old). Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity.

Results

Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p < 0.02 and p < 0.05) and ≥52 year old women (p < 0.02 and p > 0.005). There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men.

Conclusions

This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.  相似文献   

4.
5.

Background

Apoptosis has recently been proposed to contribute to the pathogenesis of emphysema.

Methods

In order to establish if cell fate plays a role even in end-stage disease we studied 16 lungs (9 smoking-associated and 7 α1antitrypsin (AAT)-deficiency emphysema) from patients who had undergone lung transplantations. Six unused donor lungs served as controls. Apoptosis was evaluated by TUNEL analysis, single-stranded DNA laddering, electron microscopy and cell proliferation by an immunohistochemical method (MIB1). The role of the transforming growth factor (TGF)-β1 pathway was also investigated and correlated with epithelial cell turnover and with the severity of inflammatory cell infiltrate.

Results

The apoptotic index (AI) was significantly higher in emphysematous lungs compared to the control group (p ≤ 0.01), particularly if only lungs with AAT-deficiency emphysema were considered (p ≤ 0.01 vs p = 0.09). The proliferation index was similar in patients and controls (1.9 ± 2.2 vs 1.7 ± 1.1). An increased number of T lymphocytes was observed in AAT-deficiency lungs than smoking-related cases (p ≤ 0.05). TGF-β1 expression in the alveolar wall was higher in patients with smoking-associated emphysema than in cases with AAT-deficiency emphysema (p ≤ 0.05). A positive correlation between TGF-βRII and AI was observed only in the control group (p ≤ 0.005, r2 = 0.8). A negative correlation was found between the TGF-β pathway (particularly TGF-βRII) and T lymphocytes infiltrate in smoking-related cases (p ≤ 0.05, r2 = 0.99)

Conclusion

Our findings suggest that apoptosis of alveolar epithelial cells plays an important role even in end-stage emphysema particularly in AAT-deficiency disease. The TGFβ-1 pathway does not seem to directly influence epithelial turnover in end-stage disease. Inflammatory cytokine different from TGF-β1 may differently orchestrate cell fate in AAT and smoking-related emphysema types.  相似文献   

6.

Introduction

Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation.

Methods

Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers.

Results

Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86.

Conclusion

Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC.  相似文献   

7.

Objective

Invariant natural killer T (iNKT) cells regulate collagen-induced arthritis (CIA) when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer). Glucose-6-phosphate isomerase (GPI)-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339) can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis.

Methods

Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO) or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs) by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells.

Results

α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b) and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells.

Conclusion

α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.  相似文献   

8.

Introduction

In Chronic Kidney Disease (CKD), immune cells are affected by uremic retention toxins. Given this effect, we analyzed lymphocyte proliferative response and immune modulators production following in vitro stimulation.

Methods

Whole blood was drawn from healthy controls, patients with eGFR <20 ml/min/1.73 m2 (Pre-dialysis, CKD stages 4 and 5) and hemodialysis patients (stage 5D). Peripheral cells were incubated for six days with pokeweed mitogen, concanavalin A, Staphylococcus enterotoxin A or influenza A vaccine. Peripheral lymphocyte proliferation was then analyzed by the “Flow-cytometric Assay of Specific Cell-mediated Immune response in Activated whole blood” (FASCIA) method, and cytokine profile in the cell supernatants was analyzed by the Milliplex multi-array method.

Results

The absolute number of lymphoblasts in response to mitogenic stimulation and the number of cells in each CD4+ and CD8+ subpopulation were similar comparing the three groups, except for a single decline in number of lymphoblasts after stimulation with Staphylococcus enterotoxin A, comparing dialysis patients with healthy controls. Levels of interleukin (IL)-2 (p=0.026), -10 (p=0.019) and -15 (p=0.027) in the Staphylococcus enterotoxin A-stimulated supernatant were lower in hemodialysis patients compared to healthy controls. Levels of IL-15 (p=0.017) from pre-dialysis patients and levels of IL-5 (p=0.019) from hemodialysis patients in influenza A vaccine-stimulated supernatants were also lower compared to controls. In pokeweed mitogen–stimulated supernatant, IL-2 levels (p=0.013) were lower in hemodialysis patients compared to pre-dialysis patients. TNF-α, IL-10, IL-12, IL-15, IL-8, MCP-1, IP-10, IFN-α2, IL-1α and eotaxin levels were all significantly higher in plasma obtained from CKD patients.

Conclusion

Our results suggest that T-cells from CKD patients have similar proliferative response to stimulation compared with healthy individuals. Moreover, however the immune cells show inability to produce selected cytokines, most likely due to the uremic milieu or dialysis procedure.  相似文献   

9.

Rationale

Nontypeable Haemophilus influenzae (NTHi) is the most common cause for bacterial exacerbations in chronic obstructive pulmonary disease (COPD). Recent investigations suggest the participation of the inflammasome in the pathomechanism of airway inflammation. The inflammasome is a cytosolic protein complex important for early inflammatory responses, by processing Interleukin-1β (IL-1β) to its active form.

Objectives

Since inflammasome activation has been described for a variety of inflammatory diseases, we investigated whether this pathway plays a role in NTHi infection of the airways.

Methods

A murine macrophage cell line (RAW 264.7), human alveolar macrophages and human lung tissue (HLT) were stimulated with viable or non-viable NTHi and/or nigericin, a potassium ionophore. Secreted cytokines were measured with ELISA and participating proteins detected via Western Blot or immunohistochemistry.

Measurements and Main Results

Western Blot analysis of cells and immunohistochemistry of lung tissue detected the inflammasome key components NLRP3 and caspase-1 after stimulation, leading to a significant induction of IL-1β expression (RAW: control at the lower detection limit vs. NTHi 505±111pg/ml, p<0.01). Inhibition of caspase-1 in human lung tissue led to a significant reduction of IL-1β and IL-18 levels (IL-1β: NTHi 24 h 17423±3198pg/ml vs. NTHi+Z-YVAD-FMK 6961±1751pg/ml, p<0.01).

Conclusion

Our data demonstrate the upregulation of the NRLP3-inflammasome during NTHi-induced inflammation in respiratory cells and tissues. Our findings concerning caspase-1 dependent IL-1β release suggest a role for the inflammasome in respiratory tract infections with NTHi which may be relevant for the pathogenesis of bacterial exacerbations in COPD.  相似文献   

10.
11.

Background

The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease.

Methods

Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate.

Results

In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-α. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-α, IFN-γ and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-α and IL-17A production by F4/80+, CD11b+ macrophages.

Conclusions

OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection.  相似文献   

12.

Background

The presence of monocyte-macrophage lineage cells in rejecting kidney transplants is associated with worse graft outcome. At present, it is still unclear how the monocyte-macrophage related responses develop after transplantation. Here, we studied the dynamics, phenotypic and functional characteristics of circulating monocytes during the first 6 months after transplantation and aimed to establish the differences between kidney transplant recipients and healthy individuals.

Methods

Phenotype, activation status and cytokine production capacity of classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++), monocytes were determined by flow cytometry in a cohort of 33 healthy individuals, 30 renal transplant recipients at transplantation, 19 recipients at 3 months and 16 recipients at 6 months after transplantation using a cross-sectional approach.

Results

The percentage of both CD16+ monocyte subsets was significantly increased in transplant recipients compared to healthy individuals, indicative of triggered innate immunity (p≤0.039). Enhanced production capacity of tumor necrosis factor-α, interferon-γ and interleukin-1β was observed by monocytes at transplantation compared to healthy individuals. Remarkably, three months post-transplant, in presence of potent immunosuppressive drugs and despite improved kidney function, interferon-γ, tumor necrosis factor-α and interleukin-10 production capacity still remained significantly increased.

Conclusion

Our data demonstrate a skewed balance towards pro-inflammatory CD16+ monocytes that is present at the time of transplantation and retained for at least 6 months after transplantation. This shift could be one of the important drivers of early post-transplant cellular immunity.  相似文献   

13.

Background

Allergic asthma is caused by abnormal immunoreactivity against allergens such as house dust mites among which Dermatophagoides farinae (Der f) is a common species. Currently, immunotherapy is based on allergen administration, which has variable effect from patient to patient and may cause serious side effects, principally the sustained risk of anaphylaxis. DNA vaccination is a promising approach by triggering a specific immune response with reduced allergenicity.

Objective

The aim of the study is to evaluate the effects of DNA immunization with Der f1 allergen specific DNA on allergic sensitization, inflammation and respiratory function in mice.

Methods

Mice were vaccinated 28 and 7 days before allergen exposure with a Der f1-encoding plasmid formulated with a block copolymer. Asthma was induced by skin sensitization followed by intra-nasal challenges with Der f extract. Total lung, broncho-alveolar lavage (BAL) and spleen cells were analyzed by flow cytometry for their surface antigen and cytokine expression. Splenocytes and lung cell IFN-γ production by CD8+ cells in response to Der f CMH1-restricted peptides was assessed by ELISPOT. IgE, IgG1 and IgG2a were measured in serum by ELISA. Specific bronchial hyperresponsiveness was assessed by direct resistance measurements.

Results

Compared to animals vaccinated with an irrelevant plasmid, pVAX-Der f1 vaccination induced an increase of B cells in BAL, and an elevation of IL-10 and IFN-γ but also of IL-4, IL-13 and IL-17 producing CD4+ lymphocytes in lungs and of IL-4 and IL-5 in spleen. In response to CD8-restricted peptides an increase of IFN-γ was observed among lung cells. IgG2a levels non-specifically increased following block copolymer/DNA vaccination although IgE, IgG1 levels and airways resistances were not impacted.

Conclusions & Clinical Relevance

DNA vaccination using a plasmid coding for Der f1 formulated with the block copolymer 704 induces a specific immune response in the model of asthma used herein.  相似文献   

14.
15.

Background

Systemic sclerosis (SSc) is an autoimmune disease where controversy on Th1/Th2 balance dominates. We investigated whether the recently discovered Th17 pattern was present in SSc.

Methodology and Principal Findings

Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 12) or diffuse cutaneous SSc (dcSSc, n = 24). A further arbitrary subdivision was made between early dcSSc (n = 11) and late dcSSc (n = 13) based upon the duration of disease. As a comparator group 14 healthy controls were studied. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, CD45Ro, CD45Ra, IL-23, GITR, CD69 and intracellular expression of IL-17, TGFβ and IFNγ using flow cytometry. Levels of IL-17, IL-6, IL-1α and IL-23 were measured using Bioplex assays. SSc patients had more and more activated CD4+ cells. In addition, CD4, CD45Ro and CD45Ra cells from all SSc patients highly expressed the IL23R, which was associated with a higher IL-17 expression as well. In contrast, IFNγ and TGFβ were selectively up regulated in SSc subsets. In line with these observation, circulating levels of IL-17 inducing cytokines IL-6, IL-23 and IL-1α were increased in all or subsets of SSc patients.

Conclusion and Significance

The combination of IL-17, IFNγ and TGFβ levels in CD45Ro and CD45Ra cells from SSc patients is useful to distinguish between lSSc, ldSSc or edSSc. Blocking Th17 inducing cytokines such as IL-6 and IL-23 may provide a useful tool to intervene in the progression of SSc.  相似文献   

16.
17.

Background and Aims

Immune-mediated, drug-induced liver injury (DILI) triggered by drug haptens is more prevalent in women than in men. However, mechanisms responsible for this sex bias are not clear. Immune regulation by CD4+CD25+FoxP3+ regulatory T-cells (Tregs) and 17β-estradiol is crucial in the pathogenesis of sex bias in cancer and autoimmunity. Therefore, we investigated their role in a mouse model of immune-mediated DILI.

Methods

To model DILI, we immunized BALB/c, BALB/cBy, IL-6–deficient, and castrated BALB/c mice with trifluoroacetyl chloride-haptenated liver proteins. We then measured degree of hepatitis, cytokines, antibodies, and Treg and splenocyte function.

Results

BALB/c females developed more severe hepatitis (p<0.01) and produced more pro-inflammatory hepatic cytokines and antibodies (p<0.05) than did males. Castrated males developed more severe hepatitis than did intact males (p<0.001) and females (p<0.05). Splenocytes cultured from female mice exhibited fewer Tregs (p<0.01) and higher IL-1β (p<0.01) and IL-6 (p<0.05) than did those from males. However, Treg function did not differ by sex, as evidenced by absence of sex bias in programmed death receptor-1 and responses to IL-6, anti-IL-10, anti-CD3, and anti-CD28. Diminished hepatitis in IL-6-deficient, anti-IL-6 receptor α-treated, ovariectomized, or male mice; undetectable IL-6 levels in splenocyte supernatants from ovariectomized and male mice; elevated splenic IL-6 and serum estrogen levels in castrated male mice, and IL-6 induction by 17β-estradiol in splenocytes from naïve female mice (p<0.05) suggested that 17β-estradiol may enhance sex bias through IL-6 induction, which subsequently discourages Treg survival. Treg transfer from naïve female mice to those with DILI reduced hepatitis severity and hepatic IL-6.

Conclusions

17β-estradiol and IL-6 may act synergistically to promote sex bias in experimental DILI by reducing Tregs. Modulating Treg numbers may provide a therapeutic approach to DILI.  相似文献   

18.
19.

Background

Multiple sclerosis (MS) has been mainly attributed to white matter (WM) pathology. However, recent evidence indicated the presence of grey matter (GM) lesions. One of the principal mediators of inflammatory processes is interleukin-1β (IL-1β), which is known to play a role in MS pathogenesis. It is unknown whether IL-1β is solely present in WM or also in GM lesions. Using an experimental MS model, we questioned whether IL-1β and the IL-1 receptor antagonist (IL-1ra) are present in GM in addition to affected WM regions.

Methods

The expression of IL-1β and IL-1ra in chronic-relapsing EAE (cr-EAE) rats was examined using in situ hybridization, immunohistochemistry and real-time PCR. Rats were sacrificed at the peak of the first disease phase, the trough of the remission phase, and at the peak of the relapse. Histopathological characteristics of CNS lesions were studied using immunohistochemistry for PLP, CD68 and CD3 and Oil-Red O histochemistry.

Results

IL-1β and IL-ra expression appears to a similar extent in affected GM and WM regions in the brain and spinal cord of cr-EAE rats, particularly in perivascular and periventricular locations. IL-1β and IL-1ra expression was dedicated to macrophages and/or activated microglial cells, at sites of starting demyelination. The time-dependent expression of IL-1β and IL-1ra revealed that within the spinal cord IL-1β and IL-1ra mRNA remained present throughout the disease, whereas in the brain their expression disappeared during the relapse.

Conclusions

The appearance of IL-1β expressing cells in GM within the CNS during cr-EAE may explain the occurrence of several clinical deficits present in EAE and MS which cannot be attributed solely to the presence of IL-1β in WM. Endogenously produced IL-1ra seems not capable to counteract IL-1β-induced effects. We put forward that IL-1β may behold promise as a target to address GM, in addition to WM, related pathology in MS.  相似文献   

20.

Background

Atherosclerosis is an inflammatory condition and increased blood levels of inflammatory biomarkers have been observed in acute coronary syndromes. In addition, high expression of inflammatory markers is associated with worse prognosis of coronary artery disease. The presence and extent of inducible ischemia in patients with stable angina has previously been shown to have strong prognostic value. We hypothesized that evidence of inducible myocardial ischemia by local lesions, as measured by fractional flow reserve (FFR), is associated with increased levels of blood based inflammatory biomarkers.

Methods

Whole blood samples of 89 patients with stable angina pectoris and 16 healthy controls were analyzed. The patients with stable angina pectoris underwent coronary angiography and FFR of all coronary lesions.We analyzed plasma levels of cytokines IL-6, IL-8 and TNF-α and membrane expression of Toll-like receptor 2 and 4, CD11b, CD62L and CD14 on monocytes and granulocytes as markers of inflammation.Furthermore, we quantified the severity of hemodynamically significant coronary artery disease by calculating Functional Syntax Score (FSS), an extension of the Syntax Score.

Results

For the majority of biomarkers, we observed lower levels in the healthy control group compared with patients with stable angina who underwent coronary catheterization.We found no difference for any of the selected biomarkers between patients with a positive FFR (≤0.75) and negative FFR (>0.80). We observed no relationship between the investigated biomarkers and FSS.

Conclusion

The presence of local atherosclerotic lesions that result in inducible myocardial ischemia as measured by FFR in patients with stable coronary artery disease is not associated with increased plasma levels of IL-6, IL-8 and TNF-α or increased expression of TLR2 and TLR4, CD11b, CD62L and CD14 on circulating leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号