首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用13C-CO2进行连续标记,研究水稻分蘖期和孕穗期光合碳在植株-土壤系统中的分配及其对大气CO2浓度升高(800 μL·L-1)和施氮(100 mg·kg-1)的响应.结果表明: CO2浓度升高显著提高分蘖期根系生物量和孕穗期地上部生物量,并使生物量根冠比在分蘖期增加,而在孕穗期减小.CO2浓度升高条件下,施氮使水稻地上部分生物量增加,却显著降低了孕穗期水稻根系生物量.CO2浓度升高使光合13C在孕穗期向土壤的输入显著增加,然而施肥并没有促进由CO2浓度升高驱动的光合13C在土壤中的积累,而且还降低了土壤中的光合13C的分配比例.综上,CO2浓度升高显著提高了稻田土壤光合碳输入,促进稻田有机碳周转;施氮促进了水稻地上部的生长,却降低了光合碳向地下的分配比例.  相似文献   

2.
采用13C-CO2进行连续标记,研究水稻分蘖期和孕穗期光合碳在植株-土壤系统中的分配及其对大气CO2浓度升高(800 μL·L-1)和施氮(100 mg·kg-1)的响应.结果表明: CO2浓度升高显著提高分蘖期根系生物量和孕穗期地上部生物量,并使生物量根冠比在分蘖期增加,而在孕穗期减小.CO2浓度升高条件下,施氮使水稻地上部分生物量增加,却显著降低了孕穗期水稻根系生物量.CO2浓度升高使光合13C在孕穗期向土壤的输入显著增加,然而施肥并没有促进由CO2浓度升高驱动的光合13C在土壤中的积累,而且还降低了土壤中的光合13C的分配比例.综上,CO2浓度升高显著提高了稻田土壤光合碳输入,促进稻田有机碳周转;施氮促进了水稻地上部的生长,却降低了光合碳向地下的分配比例.  相似文献   

3.
放牧是人类对草地进行利用的重要方式之一,放牧影响草地生态系统的结构和功能,改变植物光合碳(C)分配,进而改变土壤有机碳的储存。青藏高原的高寒草甸是世界上海拔最高的草地生态系统,寒冷季节长等独特的环境特点使其具有高的土壤有机碳含量。为了揭示长期轻度放牧对植物光合碳分配及植物光合碳在各库之间运移的影响,基于在青藏高原矮嵩草草甸开展的长期冬季轻度放牧和围栏封育实验,利用~(13)C示踪方法揭示了放牧对光合碳在植物地上、地下组织的分配以及光合碳在植物、土壤各碳库中的运移和滞留。研究结果发现,在~(13)C标记之后第30天,冬季轻度放牧样地的植物地上部分内~(13)C约占开始时~(13)C含量的32%,根和土壤中的~(13)C约占22%,植物地上部分呼吸中的~(13)C量约占30%。在放牧和围封这两个不同处理中,土壤中光合碳的滞留以及光合碳随土壤呼吸释放的速率存在显著差异。长期冬季轻度放牧促使植物将更多的光合碳输入到根和土壤碳库中。与围栏封育处理相比较,放牧处理下的~(13)C从植物地上部分输入到地下的速率较快,通过土壤呼吸释放的速率也快,而植物地上部分和植物地上部分呼吸中~(13)C的量较低。另外,高寒矮嵩草草甸土壤C储量在冬季轻度放牧和围栏封育处理下没有显著差异。我们的研究表明,尽管冬季轻度放牧改变了植物光合碳分配在地上和地下碳库中的分配,但是没有显著影响土壤碳库储量。  相似文献   

4.
放牧是人类对草地进行利用的重要方式之一, 放牧影响草地生态系统的结构和功能, 改变植物光合碳(C)分配, 进而改变土壤有机碳的储存。青藏高原的高寒草甸是世界上海拔最高的草地生态系统, 寒冷季节长等独特的环境特点使其具有高的土壤有机碳含量。为了揭示长期轻度放牧对植物光合碳分配及植物光合碳在各库之间运移的影响, 基于在青藏高原矮嵩草草甸开展的长期冬季轻度放牧和围栏封育实验, 利用 13C示踪方法揭示了放牧对光合碳在植物地上、地下组织的分配以及光合碳在植物、土壤各碳库中的运移和滞留。研究结果发现, 在 13C标记之后第30天, 冬季轻度放牧样地的植物地上部分内 13C约占开始时 13C含量的32%, 根和土壤中的 13C约占22%, 植物地上部分呼吸中的 13C量约占30%。在放牧和围封这两个不同处理中, 土壤中光合碳的滞留以及光合碳随土壤呼吸释放的速率存在显著差异。长期冬季轻度放牧促使植物将更多的光合碳输入到根和土壤碳库中。与围栏封育处理相比较, 放牧处理下的 13C从植物地上部分输入到地下的速率较快, 通过土壤呼吸释放的速率也快, 而植物地上部分和植物地上部分呼吸中 13C的量较低。另外, 高寒矮嵩草草甸土壤C储量在冬季轻度放牧和围栏封育处理下没有显著差异。我们的研究表明, 尽管冬季轻度放牧改变了植物光合碳分配在地上和地下碳库中的分配, 但是没有显著影响土壤碳库储量。  相似文献   

5.
董伊晨  刘悦秋 《生态学报》2008,28(10):4685-4691
异株荨麻是我国一种重要中药植物,如何对其进行人工定向培植具有重要意义。以异株荨麻扦插苗为实验材料,采用盆栽水分梯度法,按土壤相对含水量93.58%、80.74%、67.90%、55.06%和42.22%分为对照组CK,实验处理组T1,T2,T3和T4五个处理组,通过观测不同水分条件下,异株荨麻生长量、生物量变化和光合特征变化,试图探讨异株荨麻的水分适应性,寻找出适合其生长的水分范围及对生物量分配的影响,为北方地区种植栽培此类植物提供科学依据。结果发现:随土壤水分含量的降低,异株荨麻生长量和生物量积累呈先上升后下降趋势,在土壤相对含水量80.74%生长达到高峰,土壤相对含水量67.90%~80.74%为异株荨麻生长的适宜范围。净光合速率、蒸腾速率、气孔导度、气孔限制值及叶绿体色素含量的变化趋势与之相近似。在上述水分范围以外其光合功能下降、同化作用减弱,使异株荨麻生长衰退和干物质积累的减少。此外,土壤水分直接调控光合产物在地上和地下的分配以及植株个体形状,生产实践中,通过控水可以达到控制株形和根冠比的作用,用以诱导植株朝种植的预期方向生长,以达到获取植株不同部位产量的实际应用需求。  相似文献   

6.
基于4月底到9月底东北地区玉米农田土壤呼吸作用全生长季的观测,阐明了土壤呼吸作用的空间异质性特征,综合分析了水热因子、土壤性质、根系生物量及其测定位置对土壤呼吸作用空间异质性的影响,并对生长季中根系呼吸作用占土壤呼吸作用的比例进行了估算。结果表明,在植株尺度上,土壤呼吸作用存在着明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。在空间尺度上,土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季中,根系呼吸作用占土壤呼吸作用的比例在43.1%~63.6%之间波动,均值为54.5%。  相似文献   

7.
水培条件下烟草根、茎、叶中的草酸含量呈极显著正相关。光照条件下用^14CO2饲喂烟草叶片后,叶中很快有大量^13C-草酸形成,随后分别在茎、根中检测到^14C-草酸,时间上相差约1h。这表明烟草叶片通过光合固定CO2,其光合产物可很快转化为草酸,部分草酸可通过茎向根部运输。  相似文献   

8.
定量生育期内植物光合碳在植物组织-土壤的分配规律,对于理解全球碳循环有着重要意义。采用~(13)C-CO_2脉冲标记结合室内培养,通过元素分析仪-稳定同位素联用(Flash HT-IRMS)分析植物各部分及土壤δ~(13)C值,比较了不同生育期下水稻光合碳在不同组织间的分配规律,并量化了水稻光合碳向土壤碳库的转移。结果表明:(1)水稻地上部和根系干物质量随水稻生育期的增加而呈现递增趋势,不同的生育期表现为:分蘖期拔节期抽穗期扬花期成熟期。而整个生育期的根冠比为0.2—0.4,分蘖期的根冠比最高,随着水稻生育期的增加而递减,到抽穗期以后根冠比稳定在0.2左右。(2)脉冲标记6h后,水稻地上部和地下部(根系)的δ~(13)C值在-25.52‰—-28.33‰,不同器官的δ~(13)C值存在明显分馏效应,且趋势基本一致,即茎杆(籽粒)叶片(根系);这种由于水稻生育期特性导致的各器官碳同位素分馏的现象,可用于指示不同生育期下水稻光合碳的分配和去向。(3)不同生育期~(13)C-光合碳在植物-土壤系统的分配规律不同,生长前期光合碳向根系及土壤中分配的比例高,具有较强的碳汇能力,而随生育期光合碳在根系及土壤中的分配比例呈下降趋势,但积累量不断增加。(4)不同生育期~(13)C光合碳在水稻-土壤系统中的分配比例差异明显。水稻分蘖期有近30%光合碳用于根系建成并部分通过根系分泌物进入土壤有机碳库(10%),而到成熟期则向籽粒中分配较多,而且光合碳在土壤中的分配比例也随生育期呈下降趋势。研究结果对稻田土壤有机碳循环过程和调控机制的揭示具有重要的理论意义。  相似文献   

9.
不同类型沙地狗尾草的生长特征及生物量分配   总被引:5,自引:0,他引:5  
在科尔沁沙地封育5年的围栏内选取典型流动、半流动、半固定、固定和丘间低地5种不同样地,并以未封育的流动沙地作为对照,测定了狗尾草生长特征指标及地上、地下生物量.结果表明:随着环境条件的改善,狗尾草的分蘖株数逐渐减少,而围栏内狗尾草叶长、叶片长宽比和最大穗长增大;植株高度排列次序为丘间低地>固定沙地>半固定沙地>半流动沙地>流动沙地>对照,而围栏内植株根长及其与株高比值的大小次序与株高正好相反;不同类型沙地狗尾草地上、地下生物量有所不同,但不同类型沙地狗尾草地上、地下生物量的分配比例在一定范围内变动,生物量主要分配在地上部分,地上生物量与总生物量的比值不小于80%,而地下生物量与总生物量的比值不超过20%.  相似文献   

10.
基于三江源区果洛州军牧场不同退化程度草地,采用原位~(13)CO_2脉冲标记的方法示踪了~(13)C在甘肃马先蒿-土壤系统中的转移与分配,探讨了未退化天然草甸、重度退化高寒草甸(黑土滩)与建植5年的人工草地内代表性植物——甘肃马先蒿光合碳的分配情况。结果表明:标记当天,不同类型草地上~(13)C固定百分比在39%~71%,说明标记的效率较高且分配差异较大;3种类型草地土壤碳分配比例平均为8.6%,说明光合固定碳在甘肃马先蒿植株-土壤系统的分配与转移速度非常迅速;脉冲标记21 d后,甘肃马先蒿植株δ~(13)C值下降,5%~27%的~(13)C分配到地下。黑土滩恢复治理为人工草地5年后,甘肃马先蒿固定的光合碳转移到土体中的含量显著增加。甘肃马先蒿对于维持草地群落多样性和稳定性具有一定生态学意义,应根据草地的经济利用特性予以合理灭除。  相似文献   

11.
利用2014—2015年中国科学院封丘农业生态实验站涡度相关系统观测的冬小麦农田生态系统CO2通量数据,结合试验地常规气象观测系统的气象数据,分析冬小麦4个生育期(分蘖期、越冬期、拔节期和灌浆期)内CO2通量的日变化,研究净生态系统碳交换(NEE)的季节变化及其与气象要素的关系.结果表明: 冬小麦整个生育期内NEE为-360.15 g C·m-2,总初级生产力总量为1920.01 g C·m-2,冬小麦农田生态系统具有较强的固碳能力.冬小麦农田生态系统CO2通量具有明显的日变化和季节变化特征,分蘖期表现为碳源,越冬期、拔节期和灌浆期表现为碳汇.表观初始光能利用率平均值为0.03 mg CO2·μmol-1,光饱和时的生态系统生产量平均值为1.53 mg CO2·m-2·s-1,月平均生态系统呼吸为193.92 g C·m-2·month-1.冬小麦农田生态系统4个生育期NEE与光合有效辐射的相关关系均达到极显著水平.分蘖期、拔节期和灌浆期NEE与饱和水汽压差的相关关系极显著,越冬期达显著水平.冬小麦分蘖期、越冬期和灌浆期NEE日总量与土壤温度呈正相关,拔节期呈负相关关系.  相似文献   

12.
利用2014—2015年中国科学院封丘农业生态实验站涡度相关系统观测的冬小麦农田生态系统CO_2通量数据,结合试验地常规气象观测系统的气象数据,分析冬小麦4个生育期(分蘖期、越冬期、拔节期和灌浆期)内CO_2通量的日变化,研究净生态系统碳交换(NEE)的季节变化及其与气象要素的关系.结果表明:冬小麦整个生育期内NEE为-360.15g C·m-2,总初级生产力总量为1920.01 g C·m-2,冬小麦农田生态系统具有较强的固碳能力.冬小麦农田生态系统CO_2通量具有明显的日变化和季节变化特征,分蘖期表现为碳源,越冬期、拔节期和灌浆期表现为碳汇.表观初始光能利用率平均值为0.03 mg CO_2·μmol-1,光饱和时的生态系统生产量平均值为1.53 mg CO_2·m-2·s-1,月平均生态系统呼吸为193.92g C·m-2·month-1.冬小麦农田生态系统4个生育期NEE与光合有效辐射的相关关系均达到极显著水平.分蘖期、拔节期和灌浆期NEE与饱和水汽压差的相关关系极显著,越冬期达显著水平.冬小麦分蘖期、越冬期和灌浆期NEE日总量与土壤温度呈正相关,拔节期呈负相关关系.  相似文献   

13.
根区水肥空间耦合对冬小麦生长及产量的影响   总被引:5,自引:0,他引:5  
利用管栽试验研究了根区不同湿润方式(整体湿润、上湿下干、上干下湿)、施肥方式(整体施肥、上层施肥、下层施肥)及其耦合对冬小麦不同生育期生长及产量的影响.结果表明:下层施肥方式显著降低了分蘖期冬小麦的株高和叶面积,而不同湿润方式对分蘖期株高和叶面积的影响不显著,拔节期水肥同区方式的株高大于水肥异区方式,表现出协同耦合效应.上干下湿方式和下层施肥方式显著降低了根系干物质量、地上部干物质量和总干物质量,上层施肥方式有利于增加冬小麦生物量,而上湿下干方式与施肥处理对地上部干物质量和总干物质量的耦合效应明显.水肥同区处理的根冠比高于水肥异区处理;上干下湿方式的水分利用效率显著高于整体湿润和上湿下干方式,水肥同区处理的水分利用效率高于水肥异区处理,但下层施肥方式的水分利用效率较低.与上干下湿方式相比,上湿下干和整体湿润方式的冬小麦单穗粒数分别增加了41.7%和61.9%,上层施肥和整体施肥方式的单穗粒数高于下层施肥方式,上湿下干方式与施肥处理对小麦产量及产量构成因素(除千粒重外)的水肥耦合效应明显.不同水肥处理主要通过影响单穗粒数来影响冬小麦产量.  相似文献   

14.
Soil respiration in a cropland is the sum of heterotrophic (mainly microorganisms) and autotrophic (root) respiration. The contribution of both these types to soil respiration needs to be understood to evaluate the effects of environmental change on soil carbon cycling and sequestration. In this paper, the effects of free-air CO2 enrichment (FACE) on hetero- and autotrophic respiration in a wheat field were differentiated and evaluated by a novel split-root growth and gas collection system. Elevated atmospheric pCO2 of approximately 200 μmol mol−1 above the ambient pCO2 significantly increased soil respiration by 15.1 and 14.8% at high nitrogen (HN) and low nitrogen (LN) application rates, respectively. The effect of elevated atmospheric pCO2 on root respiration was not consistent across the wheat growth stages. Elevated pCO2 significantly increased and decreased root respiration at the booting-heading stage (middle stage) and the late-filling stage (late stage), respectively, in HN and LN treatments; however, no significant effect was found at the jointing stage (early stage). Thus, the effect of increased pCO2 on cumulative root respiration for the entire wheat growing season was not significant. Cumulative root respiration accounted for approximately 25–30% of cumulative soil respiration in the entire wheat growing season. Consequently, cumulative microbial respiration (soil respiration minus root respiration) increased by 22.5 and 21.1% due to elevated pCO2 in HN and LN, respectively. High nitrogen application significantly increased root respiration at the late stage under both elevated pCO2 and ambient pCO2; however, no significant effects were found on cumulative soil respiration, root respiration, and microbial respiration. These findings suggest that heterotrophic respiration, which is influenced by increased substrate supplies from the plant to the soil, is the key process to determine C emission from agro-ecosystems with regard to future scenarios of enriched pCO2.  相似文献   

15.
The dark respiration of shoots (measured between March and anthesisin mid-June) and of ears (measured between anthesis and maturityat end of July) of winter wheat crops, grown in 1982 and 1985under different nitrogen application and irrigation conditions,was determined in the field. The respiration rate of 126 averagesof four samples was measured hourly for a 12–14-h darkperiod including the night. Respiration (expressed per unitdry mass) generally declined through the season for both shootsand ears. The average rate of respiration obtained on the samenight was greater for fertilized and irrigated crops, comparedwith unfertilized and droughted crops. The relationship betweenthe measured respiration and photosynthesis, simulated usinga modified version of the model developed by Spitters (1986),was analysed. This revealed that: (a) Shoot respiration was less well correlated with photosynthesisfrom the day preceding measurement than with the average ofthe photosynthesis from the two days preceding measurement. (b) The constants relating shoot respiration to total crop photosynthesisper unit crop mass and ear respiration to total crop photosynthesisper unit ear mass had similar values. This suggests that allgrowth respiration takes place in the ears at the end of theseason. (c) Crop growth respiration consumes about 35% of assimilatebefore anthesis, and that growth respiration of the ear consumesabout 40% of assimilate at the end of the season. (d) No significant effect of treatment on the relationship betweenrespiration and photosynthesis was detected, suggesting thatthe observed effect of treatment on respiration is due entirelyto differences in photosynthesis. Triticwn aestivum var. Avalon, winter wheat, dark respiration, growth coefficient, photosynthesis model, nitrogen nutrition, irrigation  相似文献   

16.
A study on photosynthetic and yield effects of waterlogging of winter wheat at four stages of growth was conducted in specially designed experimental tanks during the 2007–2008 and 2008–2009 seasons. Compared with the control, waterlogging treatments at tillering and jointing-booting stages reduced photosynthetic rate (P N) and transpiration (E) significantly, it also decreased average leaf water-use efficiency (WUE, defined as the ratio of P N to E) by 3.3% and 3.4% in both years. All parameters returned quickly to the control level after soil was drained. Damage to the photosynthetic apparatus during waterlogging resulted in a lower Fv/Fm ratio, especially at the first two stages. A strong reduction in root length, root mass, root/shoot ratio, total dry mass, and leaf area index were observed. The responses from vegetative plants at tillering and jointing-booting stages were greater than in generative plants at onset of flowering and at milky stages. The number of panicles per hectare at tillering stage and the spikelet per panicle at the stages of jointing-booting and at onset of flowering were also significantly reduced by waterlogging, giving 8.2–11.3% decrease of the grain yield relative to the control in both years. No significant difference in yield components and a grain yield was observed between the control and treatments applied at milky stages. These responses, modulated by the environmental conditions prevailing during and after waterlogging, included negative effects on the growth, photosynthetic apparatus, and the grain yield in winter wheat, but the effect was strongly stage-dependent.  相似文献   

17.
The effect of root-pruning on shoot growth was investigated in winter wheat growing in lysimeters. Removal of half of the root axes at the beginning of stem elongation reduced shoot dry matter, determined 1 month after pruning, by 13% and grain yield by 8%. Removal of either the seminal or nodal root system during tillering reduced shoot dry weight, measured during the growing season, by 7% and grain yield by 25%. Root-pruning had negligible, or only transient, effects on the concentration of nitrogen, phosphorus, potassium, magnesium and manganese in the shoots. The harvest index was not affected by root-pruning.  相似文献   

18.
The fate of carbon in pulse-labelled crops of barley and wheat   总被引:11,自引:0,他引:11  
Wheat (cv. Gutha) and barley (cv. O'Connor) were grown as field crops on a shallow duplex soil (sand over clay) in Western Australia with their root systems contained within pvc columns. At four stages during growth, the shoots were pulse-labelled for 1.5h with14CO2; immediately prior to labelling, the soil was isolated from the shoot atmosphere by pvc sheets. After labelling, the soil atmosphere was pumped through NaOH to trap respired CO2 and after 2.5, 5, 7.5 and 24 h from the start of labelling, columns were destructively sampled to recover14C from the roots, soil and shoot.Both species showed similar patterns of14C distribution and changes in distribution through the growing season. During early tillering, 15–25% of the14C recovered after 24 h had been respired by the roots and rhizosphere, 17–27% was retained in the roots, 0.4–1.8% was recovered as water-soluble14C in the soil and the remainder (45–67%) was present in the shoot. These percentages changed during growth so that during grain filling only 2–3% of the14C recovered after 24 h was as respired CO2, 2–6% was in the roots, 0.2% was in the soil and over 90% was in the shoot.The distribution of14C in components of the soil-plant system changed during the 24 h after labelling with the most rapid changes occurring generally during the first 7.5 h after labelling.Using growth measurements from adjacent plots, the amounts of C added to the soil were estimated for the whole season. Carbon input to the soil was about 48 gC m–2 for wheat and 58 gC m–2 for barley; the crops produced total shoot dry matter of 494 (wheat) and 735 g m–2 (barley). Of the C input to the soil, 27.8% (wheat) and 40.3% (barley) was as respired C and only 3.3 (wheat) and 4.1% (barley) was collected as exudate (water-soluble material).  相似文献   

19.
Wheat and maize were grown in a growth chamber with the atmospheric CO2 continuously labelled with 14C to study the translocation of assimilated carbon to the rhizosphere. Two different N levels in soil were applied. In maize 26–34% of the net assimilated 14C was translocated below ground, while in wheat higher values (40–58%) were found. However, due to the much higher shoot production in maize the total amount of carbon translocated below ground was similar to that of wheat. At high N relatively more of the C that was translocated to the root, was released into the soil due to increased root respiration and/or root exudation and subsequent microbial utilization and respiration. The evolution rate of unlabelled CO2 from the native soil organic matter decreased after about 25 days when wheat was grown at high N as compared to low N. This negative effect of high N in soil was not observed with maize.  相似文献   

20.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号