首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为了研究LPS受体TLR4全长及其胞内段缺失的TLR4截断体(ΔTLR4)的绿色荧光蛋白重组腺病毒对内皮细胞系Rf-6A骨架蛋白的影响,采用PCR方法扩增目的基因片段,亚克隆至腺病毒穿梭质粒pAdTrack中,用BJ5183细菌同源重组法将目的基因重组于腺病毒骨架载体,重组腺病毒质粒经Pac Ⅰ酶切线性化后,用脂质体法转染293细胞进行腺病毒的包装扩增,用重组腺病毒感染Rf-6A细胞,采用免疫荧光标记方法观察结果。免疫荧光标记结果表明Ad-ΔTLR4明显抑制了LPS引起的细胞骨架F-actin的解聚与重排,Ad-TLR4则使LPS引起的F-actin应力纤维产生增强。以上结果说明TLR4全长及其截断体的重组腺病毒感染内皮细胞对LPS诱导的细胞骨架变化具有不同的影响,Ad-ΔTLR4对LPS引起的内皮细胞骨架变化具有抑制作用。  相似文献   

2.
剪切力对脑微血管内皮细胞骨架蛋白的影响   总被引:7,自引:2,他引:5  
利用自行研制的细胞流动小室对大鼠脑微血管内皮细胞在剪切力作用下细胞骨架蛋白的结构改变进行了初步研究,结果提示脑微血管内皮细胞在剪切力作用下,细胞形态学发生明显改变,细胞间隙增大、皱缩、脱落,细胞骨架蛋白的结构也有类似的变化,骨架蛋白沿流动方向重新排列,微丝中F-Actin的数量增加、变粗。这些改变的直接后果是内皮细胞通透性的增加。该工作为进一步开展剪切力对微血管内皮细胞功能、代谢等方面的影响提供了实验数据  相似文献   

3.
肺炎链球菌触发肺Ⅱ型上皮细胞F-actin细胞骨架重排   总被引:1,自引:0,他引:1  
目的:通过体外实验,研究肺炎链球菌(Streptococcus pneumoniae,S.pn)是否可触发肺Ⅱ型上皮细胞(A549)信号转导途径触发微丝肌动蛋白(filamentous actin,F-actin)细胞骨架重排,进而侵袭A549细胞,并初步分析触发A549细胞F-actin细胞骨架重排的细菌亚组分。方法:采用F-actin特异性FITC-phalloidin荧光染料,观察S.pn作用A549细胞前后的F-actin细胞骨架重排情况,依照重排百分率得分标准以(%)表示;用F-actin细胞骨架重排抑制剂细胞松弛素D预处理A549细胞,观察S.pn对A549细胞侵袭的改变情况;用变溶菌素提取S.pn细胞壁以观察其对F-actin细胞骨架重排的影响。结果:S.pn作用A549细胞后,经FITC-phalloidin荧光染色,F-actin细胞骨架呈黄绿色块状聚集,对照细胞呈现均匀黄绿色荧光外观;F-actin细胞骨架重排抑制剂细胞松弛素D可明显降低S.pn对A549细胞的侵袭,在其浓度为0.25μg/ml时,未得到可测的细菌数;S.pn细胞壁作用A549细胞后,经FITC-phalloidn荧光染色,F-actin细胞骨架呈黄绿色块状聚集,二者存在剂量依赖性。结论:S.pn及其细胞壁亚组分可触发A549细胞F-actin细胞骨架重排,进而侵袭A549细胞。  相似文献   

4.
目的:通过体外实验,研究Streptococcus pneumoniae(S.pn)是否通过肺Ⅱ型上皮细胞(A549)酪氨酸蛋白激酶(TPK)信号转导途径触发微丝肌动蛋白(Filamentous actin,F-actin)细胞骨架重排,进而导致S.pn对A549细胞的侵袭.方法:采用F-actin特异性FITC-phalloidin荧光染料,观察S.pn作用A549细胞前后的F-actin细胞骨架重排情况,依照重排百分率得分标准以(%)表示;用F-actin细胞骨架重排抑制剂细胞松驰素D预处理A549细胞,观察S.pn对A549细胞的侵袭率;使用TPK信号转导抑制剂Genistein预处理A549细胞,观察其与F-actin细胞骨架重排百分率间是否存在剂量依赖关系.结果:S.pn作用A549细胞后,经FITC-phalloidin荧光染色,F-actin细胞骨架呈块状、丝状聚集;F-actin细胞骨架重排抑制剂细胞松驰素D可明显降低S.pn对A549细胞的侵袭率,在其浓度为0.25μg/ml时,未得到可测的细菌数;TPK信号转导途径抑制剂可部分抑制A549细胞F-actin细胞骨架重排,并与F-actin细胞骨架重排百分率间存在量效关系,其相关系数分别为rTpK=-0.91(P<0.05).结论:上述结果提示S.pn可通过TPK细胞信号转导途径触发A549细胞F-actin细胞骨架重排,进而导致S.pn侵袭A549细胞.  相似文献   

5.
目的:研究肌肽对低氧所致大鼠血管内皮细胞损伤的影响。方法:建立低氧条件下大鼠血管内皮细胞损伤模型,用MTT法观察肌肽对低氧损伤的血管内皮细胞活性的影响,测定细胞培养基中LDH活力,并对细胞骨架进行考马斯亮蓝R-250染色观测其细胞结构。结果:浓度为10mmol/L~20mmol/L肌肽孵育血管内皮细胞6h后,可以抑制缺氧12h和24h引起的血管内皮细胞活性下降,同时减少LDH的释放,保持细胞骨架完整。结论:肌肽对低氧所致的血管内皮细胞损伤具有保护作用。  相似文献   

6.
观察蛋白酪氨酸激酶抑制剂Genistein对人肺腺癌细胞株A549细胞侵袭能力的影响,探讨Genistein抑制肺癌细胞侵袭的可能机制。以不同浓度Genistein(20μmol/L和40μmol/L)作用于A549细胞3 d后,分别用基质胶侵袭模型、黏附基质分析、Transwell小室趋化运动模型、细胞骨架蛋白染色及RT-PCR法来研究药物处理后细胞侵袭、黏附、运动、聚合型骨架蛋白(F-actin)以及基质金属蛋白酶基因表达的改变。经Genistein处理后,A549细胞的F-actin聚合减少,侵袭能力明显下降,趋化运动能力降低,基质金属蛋白酶抑制剂(TIMP-1)基因相对表达量增加,但黏附率没有降低。Genistein可降低肺癌细胞的迁移、侵袭能力。F-actin聚合减少,TIMP-1的相对表达量增加,可能是Genistein抑制肺癌细胞侵袭的机制之一。  相似文献   

7.
目的探讨大剂量电离辐射对小鼠肺的影响。方法 60Coγ照射小鼠,HE染色观察小鼠肺组织损伤,免疫组化检测小鼠肺转化生长因子β1(TGFβ1)和细胞间粘附因子1(ICAM1)的表达。结果大剂量照射后3d,小鼠肺发生明显异常病变,TGFβ1和ICAM1表达量明显增加。结论肺内皮细胞损伤和血管内物质外漏可能是急性放射性肺损伤的早期重要事件,早期检测ICAM1有助于预测急性放射性肺损伤的发生程度。  相似文献   

8.
晚期糖化终产物诱导内皮细胞通透性增高   总被引:6,自引:0,他引:6  
Guo XH  Huang QB  Chen B  Wang SY  Hou FF  Fu N 《生理学报》2005,57(2):205-210
本文探讨了晚期糖化终产物(advanrced glycation end products,AGEs)修饰蛋白对内皮细胞通透性及细胞骨架肌动蛋白的形态学影响,以及特异的AGEs受体(receptors for AGEs,RAGE)、氧化应激和p38 MAPK通路在此病理过程中的作用。用不同浓度的AGEs修饰人血清白蛋白(AGE-HSA)与人脐静脉内皮细胞株ECV304在体外共同培养不同时间,并设立对照组进行比较,采用TRITC荧光标记白蛋白漏出法测定单层内皮细胞的通透系数Pa值,荧光染色法示细胞骨架的形态学改变。与对照组相比,AGE-HSA以时间和剂量依赖的方式引起单层内皮细胞通透性的升高及细胞骨架肌动蛋白F-actin形态的改变;可溶性RAGE的抗体(anti-RAGE IgG)、NADPH氧化酶抑制剂(apocynin)及p38抑制剂SB203580均可减轻AGEs对内皮细胞屏障功能和形态的影响。结果提示,AGEs修饰蛋白对单层内皮细胞通透性及骨架重排的作用可能通过与内皮细胞上的RAGE结合,引起细胞内的氧化应激,并激活p38 MAPK通路所介导。  相似文献   

9.
目的:探讨LPS诱导的人内皮细胞单层通透性改变的分子机制。方法:应用逆转录病毒为载体,感染并筛选稳定表达持续活化型Rac1和主导抑制型Rac1的人HUVEC细胞,应用LPS刺激并观察细胞骨架蛋白F-actin和HUVEC单层通透性的改变。同时应用Western blot方法检测LPS刺激前后细胞中MAPK/ERK信号通路的改变及加入PD98059阻断ERK表达后,细胞内F-actin的改变情况。结果:与正常HUVEC相比较,LPS刺激后,感染活化型Rac1和主导抑制型Rac1的HUVEC中F-actin重构并形成大量应力纤维,细胞单层通透性显著增加。而抑制型Rac1感染后的HUVEC中F-actin无重构现象,同时细胞单层通透性无明显增加。LPS刺激前后,各组细胞中ERK1/2总蛋白均无明显改变。LPS刺激后,感染活化型Rac1的HUVEC中,p-ERK增加。经PD98059阻断后,细胞内p-ERK表达下降同时伴随F-actin解聚发生。结论:LPS诱导的内皮细胞通透性增加是经过Rac1-MAPK/ERK通路介导的。  相似文献   

10.
小G蛋白Rac1在胚胎发育早期血管形成尤其是内皮发生过程中的作用尚不清楚.采用胚胎干细胞(ESCs)为模型,建立稳定表达持续表达型Rac1(G12V)和显性失活型Rac1(T17N)编码序列的小鼠ESCs并制备胚胎小体(EBs),诱导分化后观察Rac1(G12V)和Rac1(T17N)对内皮细胞分化和迁移功能的影响.采用相差显微镜观察EBs发育和分化特征,Pull down分析Rac1表达变化,免疫荧光染色和Western blot分析内皮分化标志物,Matrigel凝胶实验观察血管索形成.结果表明,无论过表达或抑制Rac1的活化,并不影响EBs发育,均可形成典型的EBs胚层结构.抑制Rac1活化对内皮细胞系的发育无影响,但分化的内皮细胞不能连接成血管网.活化的Rac1表达减少,细胞迁移受到明显抑制.抑制Rac1活化导致细胞骨架F-actin排布紊乱.以上结果提示,Rac1影响胚胎早期血管发育的因素是抑制细胞游走,后者可能是通过F-actin机制所介导.  相似文献   

11.
A series of genistein derivatives, prepared by alkylation and difluoromethylation, were tested for their inhibitory effects on the hydrogen peroxide induced impairment in human umbilical vein endothelial (HUVE-12) cells in vitro. The HUVE-12 cells were pretreated with either the vehicle solvent (DMSO), genistein, or different amounts of the genistein derivatives for 30 min before exposed to 1 mM hydrogen peroxide for 24 h. Cell apoptosis was determined by flow cytometry with propidium iodide (PI) staining. Cellular injury was estimated by measuring the lactate dehydrogenase (LDH) release. Data suggested that the genistein derivatives possessed a protective effect on HUVE-12 cells from hydrogen peroxide induced apoptosis and reduced LDH release. Among these derivatives, 7-difluoromethyl-5,4'-dimethoxygenistein exhibited the strongest activity against hydrogen peroxide induced apoptosis of HUVE-12 cells.  相似文献   

12.
Time course changes in the cell shape and in the patterns of microfilament distribution were analyzed quantitatively using cultured porcine aortic endothelial cell monolayers before and after a shear flow exposure. Geometrical parameters of the cell and of the microfilament were measured on fluorescent photomicrographs of the cells stained with rhodamine-phalloidin. After the shear flow exposure (20 dyn cm-2, 0-24 h), the endothelial cells on glass were elongated and oriented to the direction of the flow. Under the no-flow condition, F-actin filaments were mainly localized at the periphery of the cell, although some filaments were seen in the more central portion. The angles of the filaments were randomly distributed. After 3 h, the stress fiber-like structure of an F-actin bundle was formed in the central part of the cells, and these filaments were oriented to the direction of the flow. The degree of orientation increased as the time of exposure to shear stress became longer. This change in F-actin preceded cell elongation and orientation; these changes were statistically significant only after 6 h. After 24 h, peripheral filaments were again observed, and the fluorescence intensity of rhodamine-phalloidin-stained cells was enhanced. These findings suggest that the redistribution of F-actin filaments is one of the early cellular responses to the onset of shear stress and that it is one of the most important factors controlling cell elongation and orientation to the direction of the flow.  相似文献   

13.
Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Since radiation also induces inflammation, a possible mechanism is a change in the adhesiveness of vascular endothelial cells, triggering pro-atherogenic accumulation of leukocytes. To investigate this mechanism at the cellular level, the effect of X rays on adhesiveness of cultured human aortic endothelial cells (HAECs) was determined. HAECs were grown as monolayers and exposed to 0 to 30 Gy X rays, followed by measurement of adhesiveness under physiological shear stress using a flow chamber adhesion assay. Twenty-four hours after irradiation, HAEC adhesiveness was increased, with a peak effect at 15 Gy. Radiation had no significant effect on surface expression of the endothelial adhesion molecules ICAM-1 and VCAM-1. Antibody blockade of the leukocyte integrin receptors for ICAM-1 and VCAM-1, however, abolished the radiation-induced adhesiveness. Since these leukocyte integrins can be activated by chemokines presented on the endothelial cell surface, the effect of pertussis toxin (PTX), an inhibitor of chemokine-mediated integrin activation, was tested. PTX specifically inhibited radiation-induced adhesiveness, with no significant effect on nonirradiated cells. Therefore, radiation induces increased adhesiveness of aortic endothelial cells through chemokine-dependent signaling from endothelial cells to leukocytes, even in the absence of increased expression of the adhesion molecules involved.  相似文献   

14.
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation.  相似文献   

15.
Microvascular dysfunction due to endothelial damage is often associated with the ionizing radiation used during cancer therapy. This radiation-induced capillary injury is a major factor in the inhibition of new vessel growth (angiogenesis) and in disease states such as radiation-induced pneumonitis and nephropathy. Many studies have examined the effects of radiation on endothelial cell function; however, little is known regarding the role the basement membrane plays in radiation-induced endothelial cell damage and angiogenesis. Therefore, we examined the effects of gamma radiation on aortic explants, and in vitro on three endothelial cell types (of artery, vein and capillary origin) irradiated with or without the basement membrane glycoprotein laminin-1. As expected, irradiation inhibited angiogenic sprouting of the aortic explants, endothelial cell proliferation, attachment, migration and differentiation in vitro in a dose-dependent manner. However, the effect of radiation on several of these processes in angiogenesis was reduced when the cells were irradiated on laminin-1. To further evaluate the effects of radiation on endothelial cells, we examined the expression of the vascular endothelial cell growth factor (VEGF) kinase domain region receptor in endothelial cells irradiated in the presence and absence of laminin-1. In endothelial cells irradiated on laminin-1, KDR expression increased 2.5-fold over control levels. Therefore, although radiation has a dose-dependent inhibitory effect on processes associated with angiogenesis in vitro, the presence of the basement membrane glycoprotein laminin-1 during irradiation decreases these effects.  相似文献   

16.
Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.  相似文献   

17.
Recent work reveals that actin acetylation modification has been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight the effects of calreticulin on actin acetylation and cell injury induced by microwave radiation in human microvascular endothelial cell (HMEC). HMEC injury was induced by high-power microwave of different power density (10, 30, 60, 100 mW/cm2, for 6 min) with or without exogenous recombinant calreticulin. The cell injury was assessed by lactate dehydrogenase (LDH) activity and Cell Counting Kit-8 in culture medium, migration ability, intercellular junction, and cytoskeleton staining in HMEC. Western blotting analysis was used to detected calreticulin expression in cytosol and nucleus and acetylation of globular actin (G-actin). We found that HMEC injury was induced by microwave radiation in a dose-dependent manner. Pretreatment HMEC with calreticulin suppressed microwave radiation-induced LDH leakage and increased cell viability and improved microwave radiation-induced decrease in migration, intercellular junction, and cytoskeleton. Meanwhile, pretreatment HMEC with exogenous calreticulin upregulated the histone acetyltransferase activity and the acetylation level of G-actin and increased the fibrous actin (F-actin)/G-actin ratio. We conclude that exogenous calreticulin protects HMEC against microwave radiation-induced injury through promoting actin acetylation and polymerization.  相似文献   

18.
Bacterial lipopolysaccharide (LPS) influences pulmonary vascular endothelial barrier function in vitro. We studied whether LPS regulates endothelial barrier function through actin reorganization. Postconfluent bovine pulmonary artery endothelial cell monolayers were exposed to Escherichia coli 0111:B4 LPS 10 ng/ml or media for up to 6 h and evaluated for: (1) transendothelial 14C-albumin flux, (2) F-actin organization with fluorescence microscopy, (3) F-actin quantitation by spectrofluorometry, and (4) monomeric G-actin levels by the DNAse 1 inhibition assay. LPS induced increments in 14C-albumin flux (P < 0.001) and intercellular gap formation at ≥ 2–6 h. During this same time period the endothelial F-actin pool was not significantly changed compared to simultaneous media controls. Mean (±SE) G-actin (μg/mg total protein) was significantly (P < 0.002) increased compared to simultaneous media controls at 2, 4, and 6 h but not at 0.5 or 1 h. Prior F-actin stabilization with phallicidin protected against the LPS-induced increments in G-actin (P = 0.040) as well as changes in barrier function (P < 0.0001). Prior protein synthesis inhibition unmasked an LPS-induced decrement in F-actin (P = 0.0044), blunted the G-actin increment (P = 0.010), and increased LPS-induced changes in endothelial barrier function (P < 0.0001). Therefore, LPS induces pulmonary vascular endothelial F-actin depolymerization, intercellular gap formation, and barrier dysfunction. Over the same time period, LPS increased total actin (P < 0.0001) and new actin synthesis (P = 0.0063) which may be a compensatory endothelial cell response to LPS-induced F-actin depolymerization. © 1993 Wiley-Liss, Inc.  相似文献   

19.
目的和方法:用针头式滤器检测肿瘤坏死因子(TNF)作用前后及三种药物干预时大鼠肺微血管内皮细胞(RPMVEC)单层通透性的变化,并用免疫组化的方法检测TNF作用前后细胞F-肌动蛋白的改变。结果:TNF作用30min、60min、90min通透系数Kf值较致伤前显著增高;分别加福莫特罗(FOR)、山莨菪碱或霍乱毒素(CTX)干预时Kf值均显著低于TNF组。而TNF作用90min,RPMVEC F-肌动蛋白发生明显解聚:分别加POR、山莨菪硷或CTX干预时F-肌动蛋白无明显变化。结论:TNF诱导RPMVEC单层通透性增高的机制与细胞F-肌动蛋白解聚有关,FOR、山莨菪碱和CTX可能通过抑制F-肌动蛋白解聚而抑制NF诱导的RPMVEC单层通透性增高。  相似文献   

20.
The cytoskeleton in endocardial endothelium of rat heart was examined by en face confocal scanning laser microscopy. In the ventricular cavity, endocardial endothelial cells had a polygonal shape and F-actin staining was generally restricted to the peripheral junctional actin band. Central F-actin bundles, or stress fibers, in endocardial endothelial cells were found on the tendon end of papillary muscles, especially in the right ventricle, and frequently in the outflow tract of both ventricles; elsewhere, stress fibers were scarce. Many endocardial endothelial cells were elongated in areas of endothelium with stress fibers, but no correlation was found between cell elongation and the number of stress fibers. An inverse correlation was found between the number of stress fibers and the surface area of endocardial endothelial cells. Shear stress as well as mechanical deformation of the surface of the ventricular wall during the cardiac cycle may affect cell shape and the organization of actin filaments in endocardial endothelial cells. Vimentin in endocardial endothelial cells formed a filamentous network with some distinct cytoplasmic and juxtanuclear vimentin bundles. No perinuclear ring of vimentin filaments was observed in endocardial endothelium. Microtubules in endocardial endothelial cells were, in contrast to endothelial cells of rat aorta, not aligned, less closely packed and originated from randomly distributed centriolar regions. The cytoskeleton has been suggested to play an important role in cellular functions of vascular endothelial cells. Accordingly, differences in the cytoskeletal organization between endocardial and vascular endothelial cells may relate to differences in functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号