首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much of the tissue damage resulting from trauma to the central nervous system appears to result from secondary, delayed biochemical changes that follow primary mechanical injury. However, the early biochemical events remain to be elucidated. In the present studies, we have used phosphorus (31P) magnetic resonance spectroscopy (MRS) to examine in vivo, the temporal changes in brain intracellular free Mg2+ concentration following fluid percussion head injury in rats. We report that injury caused a profound and rapid decrease in intracellular free Mg2+ which was significantly correlated with the severity of injury. At high levels of injury, the decrease in intracellular free Mg2+ concentration was associated with a decrease in total Mg2+ concentration as determined by atomic absorption spectrophotometry. Prophylactic treatment with MgSO4 prevented the post-traumatic decrease in intracellular free Mg2+ and resulted in a significant improvement in acute neurological outcome. Because magnesium is essential for a number of critical enzyme reactions, including those of glycolysis, oxidative and substrate level phosphorylation, protein synthesis, and phospholipid synthesis, changes in free Mg2+ after brain trauma may represent a critical early factor leading to irreversible tissue damage.  相似文献   

2.
(Ca2+ + Mg2+)-stimulated ATPase of human red cell membranes as a function of ATP concentration was measured at fixed Ca2+ concentration and at two different but constant Mg2+ concentrations. Under the assumption that free ATP rather than Mg-ATP is the substrate, a value for Km (for ATP) of 1-2 micron is found which is in good agreement with the value obtained in the phosphorylation reaction by A.F. Rega and P.J. Garrahan (1975. J. Membrane Biol. 22:313). Mg2+ increases both the maximal rate and the affinity for ATP, whereas Ca2+ increases the maximal rate without affecting Km for ATP. As a by-product of these experiments, it was shown that after thorough removal of intracellular proteins the adenylate kinase reaction at approximately 1 mM substrate concentration is several times faster than maximal rate of (Ca2+ + Mg2+)ATPase in red cell membranes.  相似文献   

3.
In order to study whether Pb2+ and imidazole increase the ATP phosphorylation level of (Na+ + K+)-ATPase by the same mechanism, the effects of both compounds on phosphorylation and dephosphorylation reactions of the enzyme have been studied. Imidazole in the presence of Mg2+ increases steady-state phosphorylation of (Na+ + K+)-ATPase by decreasing, in a competitive way, the K+-sensitivity of the formed phospho-enzyme (E-P . Mg). If Pb2+ is present during phosphorylation, the rate of phosphorylation increases and a K+- and ADP-insensitive phosphointermediate (E-P . Pb) is formed. Pb2+ has no effect on the K+-sensitivity of E-P . Mg and EDTA is unable to affect the K+-insensitivity of E-P . Pb. These effects indicate that Pb2+ acts before or during phosphorylation with the enzyme. Binding of Na+ to E-P . Pb does not restore K+-sensitivity either. However, increasing Na+ during phosphorylation in the presence of Pb2+ leads to formation of the K+-sensitive intermediate (E-P . Mg), indicating that E-P . Pb is formed via a side path of the Albers-Post scheme. ATP and ADP decrease the dephosphorylation rate of both E-P . Mg and E-P . Pb. Above optimal concentration, Pb2+ also decreases the steady-state phosphorylation level both in the absence and in the presence of Na+. This inhibitory effect of Pb2+ is antagonized by Mg2+.  相似文献   

4.
Previous studies have shown that glycolysis can oscillate periodically, driven by feedback loops in regulation of key glycolytic enzymes by free ADP and other metabolites. Here we show both theoretically and experimentally in cardiac myocytes that when the capacity of oxidative phosphorylation and the creatine kinase system to buffer the cellular ATP/ADP ratio is suppressed, glycolysis can cause large scale periodic oscillations in cellular ATP levels (0.02-0.067 Hz), monitored from glibenclamide-sensitive changes in action potential duration or intracellular free Mg2+. Action potential duration oscillations originate primarily from glycolysis, since they 1) occur in the presence of cyanide or rotenone, 2) are suppressed by iodoacetate, 3) are accompanied by at most very small mitochondrial membrane potential oscillations, and 4) exhibit an anti-phase relationship to NADH fluorescence. By uncoupling energy supply-demand balance, glycolytic oscillations may promote injury and electrophysiological heterogeneity during acute metabolic stresses, such as acute myocardial ischemia in which both oxidative phosphorylation and creatine kinase activity are inhibited.  相似文献   

5.
Inorganic lead ion in micromolar concentrations inhibits Electrophorus electroplax microsomal (Na+ + K+)-adenosine triphosphatase ((Na+ + K+)-ATPase) and K+-p-nitrophenylphosphatase (NPPase). Under the same conditions, the same concentrations of PbCl2 that inhibit ATPase activity also stimulate the phosphorylation of electroplax microsomes in the absence of added Na+. Enzyme activity is protected from inhibition by increasing concentrations of microsomes, ATP, and other metal ion chelators. The kinetics follow the pattern of a reversible noncompetitive inhibitor. No kinetic evidence is elicited for interactions of Pb2+ with Na+, K+, Mg2+, ATP, or p-nitrophenylphosphate. Na+- ATPase, in the absence of K+, and (Na+ + K+)-NPPase activity at low [K+] are also inhibited. ATP inhibition of NPPase is not reversed by Pb2+. The calculated concentrations of free [Pb2+] that produce 50% inhibition are similar for ATPase and NPPase activities. Pb2+ may act at a single independent binding site to produce both stimulation of the kinase and inhibition of the phosphatase activities.  相似文献   

6.
Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.  相似文献   

7.
The initial rates of ATP hydrolysis catalyzed by Fo x F1 (bovine heart submitochondrial particles) preincubated in the presence of Pi for complete activation of the oligomycin-sensitive ATPase were measured as a function of ATP, Mg2+, and Mg x ATP concentrations. The results suggest the mechanism in which Mg x ATP complex is the true substrate of the ATPase and the second Mg2+ bound at a specific pH-dependent site is needed for the catalysis. Simple hyperbolic Michaelis--Menten dependences of the reaction rate on the substrate (Mg x ATP) and activating Mg2+ were found. In contrast to the generally accepted view, no inhibition of ATPase by free Mg2+ was found. Inhibition of the reaction by free ATP is due to a decrease of free Mg2+ needed for the catalysis. In the presence of both Ca2+ and Mg2+ the kinetics of ATP hydrolysis suggest that the Ca x ATP complex is neither hydrolyzed nor competes with Mg x ATP, and free Ca2+ does not affect the hydrolysis of Mg x ATP complex. A crucial role of free Mg2+ in the time-dependent inhibition of ATPase by azide is shown. The dependence of apparent Km for Mg x ATP on saturation of the Mg2+-specific site suggests the formal ping-pong mechanism in which bound Mg2+ participates in the overall reaction after dissociation of one product (most likely Pi) thus promoting either release of ADP (catalytic turnover) or slow isomerization of the enzyme--product complex (formation of the dead-end ADP(Mg2+)-inhibited enzyme). The rate of Mg x ATP hydrolysis only slightly depends on pH at saturating Mg2+. In the presence of limited amounts of free Mg2+ the pH dependence of the initial rate corresponds to the titration of a single group with pKa = 7.5. The simple competition between H+ and activating Mg2+ was observed. The specific role of Mg2+ as a coupling cation for energy transduction in Fo x F1-ATPase is discussed.  相似文献   

8.
Adenine nucleotides and respiration were assayed with rat kidney mitochondria depleted of adenine nucleotides by pyrophosphate treatment and by normothermic ischemia, respectively, with the aim of identifying net uptake of ATP as well as elucidating the contribution of adenine nucleotide loss to the ischemic impairment of oxidative phosphorylation. Treatment of rat kidney mitochondria with pyrophosphate caused a loss of adenine nucleotides as well as a decrease of state 3 respiration. After incubation of pyrophosphate-treated mitochondria with ATP, Mg2+ and phosphate, the content of adenine nucleotides increased. We propose that kidney mitochondria possess a mechanism for net uptake of ATP. Restoration of a normal content of matrix adenine nucleotides was related to full recovery of the rate of state 3 respiration. A hyperbolic relationship between the matrix content of adenine nucleotides and the rate of state 3 respiration was observed. Mitochondria isolated from kidneys exposed to normothermic ischemia were characterized by a decrease in the content of adenine nucleotides as well as in state 3 respiration. Incubation of ischemic mitochondria with ATP, Mg2+ and phosphate restored the content of adenine nucleotides to values measured in freshly-isolated mitochondria. State 3 respiration of ischemic mitochondria reloaded with ATP recovered only partially. The rate of state 3 respiration increased by ATP-reloading approached that of uncoupler-stimulated respiration measured with ischemic mitochondria. These findings suggest that the decrease of matrix adenine nucleotides contributes to the impairment of ischemic mitochondria as well as underlining the occurrence of additional molecular changes of respiratory chain limiting the oxidative phosphorylation.  相似文献   

9.
Lead has been shown to affect calcium homeostasis. However, there is no prior evidence to indicate an effect of low concentrations of lead in the environment (approximately 1 microM) on the intracellular free Ca2+ concentration in any human tissue. We have investigated the effect of lead on the intracellular free Ca2+ concentration of human blood platelets using 19F-NMR and a fluorinated intracellular Ca2+ indicator. We report a basal intracellular free Ca2+ value of 172 +/- 8 nM. Treatment with 1, 5, 10 and 25 microM Pb2+ resulted in average increases in intracellular free Ca2+ of 39%, 91%, 135% and 172%, respectively. The percent increase in intracellular free Ca2+ was linearly and positively correlated with the log of Pb2+ concentration. Using atomic absorption spectroscopy, a significant increase in total calcium of approx. 10 nmol/mg protein was found in 25 microM Pb2+ treated platelets. This indicates that influx of external Ca2+ contributes to the observed increase in free Ca2+. The results provide an explanation for the previously reported effects of lead on platelet function, and suggest a mechanism for low level lead-induced hypertension.  相似文献   

10.
1. The kinetics of inhibition of brain soluble cytoplasmic hexokinase by ADP were examined in relation to variations in the concentrations of Mg(2+) and ATP. The type of inhibition observed was dependent on the Mg(2+)/ATP ratio. 2. ADP at Mg(2+)/ATP ratios 2:1 exhibited inhibition of the ;mixed' type; at Mg(2+)/ATP ratios 1:1 the inhibition appeared to be competitive with regard to ATP. 3. Inhibition by free ATP was observed when the Mg(2+)/ATP ratio was less than 1:1. The inhibition was also of the ;mixed' type with respect to MgATP(2-). 4. The inhibitions due to ADP and to free ATP were not additive. The results suggested that there may be up to four sites in the soluble enzyme: for glucose, glucose 6-phosphate, ADP and MgATP(2-). 5. The ;free' non-particulate intracellular Mg(2+) concentration was measured and concluded to be about 1.5mm. 6. The concentrations in vivo of Mg(2+) and ATP likely to be accessible to a cytoplasmic enzyme are suggested to be below those that yield maximum hexokinase rates in vitro. The enzymic rates were measured at relevant suboptimum concentrations of Mg(2+) and ATP in the presence of ADP. Calculations that included non-competitive inhibition due to glucose 6-phosphate (56-65% at 0.25mm) resulted in net rates very similar to the measured rates for overall glycolysis. This system may therefore provide a basis for effective control of cerebral hexokinase.  相似文献   

11.
Addition of ATP to medium surrounding intact, transformed 3T3 cells activates the formation of aqueous channels in the plasma membrane. This results in efflux of nucleotide pools and ions and entry into the cytosol of charged, phosphorylated species. In such permeabilized cells, glycolysis is totally dependent on the external addition of glucose, inorganic phosphate, ADP, K+, Mg2+ and NAD+ which restore lactic acid formation to levels found in untreated cells. As expected, such reconstitution of glycolytic activity is found to restore intracellular ATP levels. This is accompanied by sealing of the membrane channels so that efflux of nucleotide pools ceases. Pyruvate, a substrate for mitochondrial ATP synthesis, when provided along with ADP and inorganic phosphate also produces sealing of the membrane channels. On the other hand, reactivation of pentose phosphate shunt activity, which does not lead to ATP synthesis, does not induce restoration of the membrane permeability barrier. Furthermore, compounds which lower the internal ATP pool prevent sealing, and also render the plasma membrane more sensitive to external ATP (Rozengurt and Heppel, '79). Sealing of aqueous channels following restoration of the internal ATP pool is associated with phosphorylation of the inner membrane surface, and is unaffected by inhibitors of protein synthesis, microfilament or microtubular assembly. These results indicate the probable role of intracellular ATP in the restoration and/or maintenance of an active membrane barrier against efflux of small molecules and ions in transformed 3T3 cells.  相似文献   

12.
1. The effect of free Mg2+, MgEDTA and MgCDTA on the phofphorylation of the (Na+ + K+)-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been studied. 2. 10 mM trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) added simultaneously with [gamma-32P]ATP to a solution containing the enzyme, 1 mM Mg2+ and 150 mM Na+ does not prevent formation of phospho-enzyme. When [gamma-32P]ATP is added after CDTA the level of phospho-enzyme obtained decreases with increase in the time interval between addition of CDTA and ATP. The inability of CDTA to prevent the formation of phospho-enzyme becomes more pronounced when the medium contains MgEDTA. In the presence of CDTA the maximum amount of phospho-enzyme formed increases with the MgEDTA concentration. 3. Without CDTA the steady-state level of phospho-enzyme is directly proportional to the logarithm of free Mg2+ concentration. Neither with suboptimal nor with optimal concentrations of free Mg2+ does MgEDTA have an effect on the level of phospho-enzyme formed. 4. Using the phospho-enzyme level as a measure of free Mg2+ the experiments show that CDTA reacts slower with Mg2+ than does EDTA, but the stability constant of MgCDTA complex is higher than of MgCDTA, complex. 5. Due to the higher stability constant, of MgCDTA, as compared to MgEDTA, addition of CDTA to a medium containing free Mg2+ and MgEDTA will not only chelate the free Mg2+, but it will also shift the equilibrium from MgEDTA towards MgCDTA, i.e. MgEDTA acts as a source of free Mg2+ which is then chelated by CDTA. The experiments show that it takes minutes before Mg2+, EDTA and CDTA come to equilibrium. Provided the dissociation of MgEDTA is faster than the formation of the MgCDTA complex, the medium will contain a concentration of free Mg2+ which at any given instant is near in equilibrium with a slowly decreasing concentration of MgEDTA; this free Mg2+ can support phosphorylation. This can explain why the rate with which CDTA stops phosphorylation decreases with an increase in the MgEDTA concentration. 6. When phosphorylation is stopped by addition of unlabelled ATP, the rate of dephosphorylation is faster than when it is stopped by addition of CDTA both with and without EDTA in the medium. CDTA reacts too slowly with Mg2+ to be used as a chelator in studies where a fast removal of Mg2+ is required. 7. A previous finding has been verified, namely that the rate of spontaneous, of K+-stimulated and of ADP-stimulated dephosphorylation is independent of the Mg2+ concentration during formation of phospho-enzyme.  相似文献   

13.
The rates of both forward and reverse electron transfer in phosphorylating submitochondrial particles from bovine heart can be controlled by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi]) where deltaG'o is the standard free energy of ATP hydrolysis. Studies of the effects of deltaGp on NADH respiration and the reduction of NAD+ by succinate show that increasing values of deltaGp cause an inhibition of forward electron transfer and a stimulation of reverse electron transfer. Between deltaGp values of 7.6 and 13.0 kcal/mol the rate of NADH respiration decreased 3-fold and the rate of NAD+ reduction by succinate increased 3-fold. Indirect phosphorylation potential titration experiments as well as direct chemical measurements indicate that steady state levels of ATP, ADP, and Pi are established during NADH respiration which correspond to a deltaGp equal to 10.7 to 11.4 kcal/mol.  相似文献   

14.
We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118 +/- 4 nM to a peak value of 237 +/- 8 nM within 40 min. 1,25-(OH)2D3 also increased the initial rate of Ca2+ influx into ROS 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effect on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 microM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.  相似文献   

15.
N Stahl  W P Jencks 《Biochemistry》1987,26(24):7654-7667
Phosphorylation of the sarcoplasmic reticulum calcium ATPase, E, is first order with kb = 70 +/- 7 s-1 after free enzyme was mixed with saturating ATP and 50 microM Ca2+; this is one-third the rate constant of 220 s-1 for phosphorylation of enzyme preincubated with calcium, cE.Ca2, after being mixed with ATP under the same conditions (pH 7.0, Ca2+-loaded vesicles, 100 mM KCl, 5 mM Mg2+, 25 degrees C). Phosphorylation of E with ATP and Ca2+ in the presence of 0.25 mM ADP gives approximately 50% E approximately P.Ca2 with kobsd = 77 s-1, not the sum of the forward and reverse rate constants, kobsd = kf + kr = 140 s-1, that is expected for approach to equilibrium if phosphorylation were rate limiting. These results show that (1) kb represents a slow conformational change, rather than phosphoryl transfer, and (2) different pathways are followed for the phosphorylation of E and of cE.Ca2. The absence of a lag for phosphorylation of E with saturating ATP and Ca2+ indicates that all other steps, including the binding of Ca2+ ions and phosphoryl transfer, have rate constants of greater than 500 s-1. Chase experiments with unlabeled ATP or with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) show that the rate constants for dissociation of [gamma-32P]ATP and Ca2+ are comparable to kb. Dissociation of ATP occurs at 47 s-1 from E.ATP.Ca2+ and at 24 s-1 from E.ATP. Approximately 20% phosphorylation occurs following an EGTA chase 4.5 ms after the addition of 300 microM ATP and 50 microM Ca2+ to enzyme. This shows that Ca2+ binds rapidly to the free enzyme, from outside the vesicle, before the conformational change (kb). The fraction of Ca2+-free E.[gamma-32P]ATP that is trapped to give labeled phosphoenzyme after the addition of Ca2+ and a chase of unlabeled ATP is half-maximal at 6.8 microM Ca2+, with a Hill slope of n = 1.8. The calculated dissociation constant for Ca2+ from E.ATP.Ca2 is approximately 2.2 X 10(-10) M2 (K0.5 = 15 microM). The rate constant for the slow phase of the biphasic reaction of E approximately P.Ca2 with 1.1 mM ADP increases 2.5-fold when [Ca2+] is decreased from 50 microM to 10 nM, with half-maximal increase at 1.7 microM Ca2+. This shows that Ca2+ is dissociating from a different species, aE.ATP.Ca2, that is active for catalysis of phosphoryl transfer, has a high affinity for Ca2+, and dissociates Ca2+ with k less than or equal to 45 s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

17.
D W Jung  L Apel  G P Brierley 《Biochemistry》1990,29(17):4121-4128
The concentration of free Mg2+ in the matrix of isolated heart mitochondria has been monitored by using the fluorescent probe furaptra (mag-fura-2). Beef heart mitochondria respiring in a KCl medium in the absence of external Mg2+ maintain free matrix Mg2+ near 0.50 mM. Addition of Pi under these conditions decreases free Mg2+ by 0.12-0.17 mM depending on the substrate. This decrease in free Mg2+ appears to reflect changing ligand availability in the matrix. The decrease is prevented when the Pi transporter is blocked by mersalyl. Addition of ADP to initiate state 3 respiration causes a marked increase in free matrix Mg2+ (0.1-0.2 mM) that persists as long as ATP formation is taking place; free Mg2+ then returns to the base level. This cyclic change is blocked by oligomycin and carboxyatractyloside and appears to reflect to a large extent the decrease in matrix Pi that accompanies oxidative phosphorylation. Exchange of external ADP for matrix ATP may also contribute to the increase in free matrix Mg2+. Addition of an uncoupler promotes anion efflux and increases free matrix Mg2+. Similar changes in free Mg2+ on addition of Pi, ADP, or uncoupler are seen when extramitochondrial Mg2+ is buffered from 0.5 to 2 mM, but the basal free matrix Mg2+ increases as external Mg2+ concentration increases in this range. Free matrix Mg2+ also increases when total mitochondrial Mg2+ is increased by respiration-dependent uptake in the presence of Pi. It is concluded that matrix free Mg2+ changes significantly with changing ligand availability and that such changes may contribute to the regulation of Mg2(+)-sensitive matrix enzymes and membrane transporters.  相似文献   

18.
Neurotransmission, synaptic plasticity, and maintenance of membrane excitability require high mitochondrial activity in neurosecretory cells. Using a fluorescence-based intracellular O2 sensing technique, we investigated the respiration of differentiated PC12 cells upon depolarization with 100 mm K+. Single cell confocal analysis identified a significant depolarization of the plasma membrane potential and a relatively minor depolarization of the mitochondrial membrane potential following K+ exposure. We observed a two-phase respiratory response: a first intense spike lasting approximately 10 min, during which average intracellular O2 was reduced from 85-90% of air saturation to 55-65%, followed by a second wave of smaller amplitude and longer duration. The fast rise in O2 consumption coincided with a transient increase in cellular ATP by approximately 60%, which was provided largely by oxidative phosphorylation and by glycolysis. The increase of respiration was orchestrated mainly by Ca2+ release from the endoplasmic reticulum, whereas the influx of extracellular Ca2+ contributed approximately 20%. Depletion of Ca2+ stores by ryanodine, thapsigargin, and 4-chloro-m-cresol reduced the amplitude of respiratory spike by 45, 63, and 71%, respectively, whereas chelation of intracellular Ca2+ abolished the response. Uncoupling of the mitochondria with the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone amplified the responses to K+; elevated respiration induced a profound deoxygenation without increasing the cellular ATP levels reduced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Cleavage of synaptobrevin 2 by tetanus toxin, known to reduce neurotransmission, did not affect the respiratory response to K+, whereas the general excitability of d PC12 cells increased.  相似文献   

19.
The relative effectiveness of the ligands Mg2+, Na+, and ATP in preparing sodium plus potassium ion transport adenosine triphosphatase for phosphorylation was studied by means of a rapid mixing apparatus. Addition of 2 mM MgC12, 120 mM NaC1, and 5 muM [gamma-32P]ATP simultaneously to the free enzyme gave an initial phosphorylation rate of about 0.3 mu mol-mg-1-min-1 at 25 degrees and pH7.4. Addition of Mg2+ to the enzyme beforehand, separately or in combination with Na+ or ATP, had little effect on the initial rate. Addition of Na+ only to the enzyme beforehand increased this rate 1.5- to 3-fold. Early addition of ATP 130 ms before Na+ plus Mg2+ increased the rate 6- to 7-fold. Early addition of Na+ plus ATP was most effective; it increased the rate about 10-fold. The data indicate that Na+ and ATP bind in a random order and that each ligand potentiates the effect of the other. The rate of dissociation of ATP from the enzyme was estimated by a chase of unlabeled ATP of variable duration. This rate was slowest in the presence of Mg2+ (k = 540 min-1), most rapid in the presence of Na+ (k = 2000 min-1), and intermediate (k = 1100 min-1) in the absence of metal ions. The effect of Na+ concentration on the rate of phosphorylation was estimated when Na+ with Mg2+ was added to the enzyme-ATP complex. The rate followed Michaelis-Menten kinetics with a maximum of 2.9 mu mol-mg-1 and a Km of 8 mM. The effect of Na+ concentration was also estimated on the increment in the rate of phosphorylation produced by the presence of Na+ with the enzyme-ATP complex beforehand. The increment followed the same kinetics with a maximum of 3.75 mu mol-mg-1-min-1 and a Km of 5.4 mM. In both cases estimation of the Hill coefficient failed to show cooperativity between binding sites for Na+. In contrast, the dependence of ouabain-sensitive ATPase activity on Na+ concentration in the absence of K+ indicated two sites for Na+ with apparent Km values of 0.16 and 8.1 mM, respectively.  相似文献   

20.
The apparent intracellular Mg2+ buffering, or muffling (sum of processes that damp changes in the free intracellular Mg2+ concentration, [Mg2+](i), e.g., buffering, extrusion, and sequestration), was investigated in Retzius neurons of the leech Hirudo medicinalis by iontophoretic injection of H+, OH-, or Mg2+. Simultaneously, changes in intracellular pH and the intracellular Mg2+, Na+, or K+ concentration were recorded with triple-barreled ion-selective microelectrodes. Cell volume changes were monitored measuring the tetramethylammonium (TMA) concentration in TMA-loaded neurons. Control measurements were carried out in electrolyte droplets (diameter 100-200 microm) placed on a silver wire under paraffin oil. Droplets with or without ATP, the presumed major intracellular Mg2+ buffer, were used to quantify the pH dependence of Mg2+ buffering and to determine the transport index of Mg2+ during iontophoretic injection. The observed pH dependence of [Mg2+](i) corresponded to what would be expected from Mg2+ buffering through ATP. The quantity of Mg2+ muffling, however, was considerably larger than what would be expected if ATP were the sole Mg2+ buffer. From the decrease in Mg2+ muffling in the nominal absence of extracellular Na+ it was estimated that almost 50% of the ATP-independent muffling is due to the action of Na+/Mg2+ antiport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号