首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Human metapneumovirus (hMPV) is a recently described paramyxovirus that causes respiratory tract infections. Prior clinical studies have highlighted the importance of respiratory viruses, such as influenza virus, in facilitating secondary bacterial infections and increasing host immunopathology. The objective of the present work was to evaluate the effects of initial viral infection with hMPV or influenza A virus followed by Streptococcus pneumoniae superinfection 5 days later in a murine model. Both groups of superinfected mice demonstrated significant weight loss (mean of 15%) and higher levels of airway obstruction (mean enhanced pause value of 2.7) compared to those of mice infected with hMPV, influenza virus, or pneumococcus alone. Bacterial counts increased from 5 × 102 CFU/lung in mice infected with pneumococcus only to 107 and 109 CFU/lung in mice with prior infections with hMPV and influenza A virus, respectively. A more pronounced interstitial and alveolar inflammation correlated with higher levels of inflammatory cytokines and chemokines such as interleukin-1α (IL-1α), IL-1β, IL-6, IL-12, monocyte chemotactic protein 1, macrophage inflammatory protein 1α, KC, and granulocyte colony-stimulating factor, as well as greater expression of Toll-like receptor 2 (TLR2), TLR6, TLR7, and TLR13 in the lungs of superinfected animals compared to results for single infections, with similar immunological effects seen in both coinfection models. Prior infection with either hMPV or influenza A virus predisposes mice to severe pneumococcus infection.  相似文献   

2.
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.  相似文献   

3.
During the early phase of the 2009 influenza pandemic, attempts were made to contain the spread of the virus. Success of reactive control measures may be compromised if the proportion of transmission that occurs before overt clinical symptoms develop is high. In this study we investigated the timing of transmission of an early prototypic strain of pandemic H1N1 2009 influenza virus in the ferret model. Ferrets are the only animal model in which this can be assessed because they display typical influenza-like clinical signs including fever and sneezing after infection. We assessed transmission from infected animals to sentinels that were placed either in direct contact or in adjacent cages, the latter reflecting the respiratory droplet (RD) transmission route. We found that pre-symptomatic influenza transmission occurred via both contact and respiratory droplet exposure before the earliest clinical sign, fever, developed. Three of 3 animals exposed in direct contact between day 1 and 2 after infection of the donor animals became infected, and 2/3 of the animals exposed at this time period by the RD route acquired the infection, with the third animal becoming seropositive indicating either a low level infection or significant exposure. Moreover, this efficient transmission did not temporally correlate with respiratory symptoms, such as coughs and sneezes, but rather with the peak viral titre in the nose. Indeed respiratory droplet transmission did not occur late in infection, even though this was when sneezing and coughing were most apparent. None of the 3 animals exposed at this time by the RD route became infected and these animals remained seronegative at the end of the experiment. These data have important implications for pandemic planning strategies and suggest that successful containment is highly unlikely for a human-adapted influenza virus that transmits efficiently within a population.  相似文献   

4.
The last decade has seen the emergence of two new influenza A subtypes and they have become a cause of concern for the global community. These are the highly pathogenic H5N1 influenza A virus (H5N1) and the Pandemic 2009 influenza H1N1 virus. Since 2003 the H5N1 virus has caused widespread disease and death in poultry, mainly in south East Asia and Africa. In humans the number of cases infected with this virus is few but the mortality has been about 60%. Most patients have presented with severe pneumonia and acute respiratory distress syndrome. The second influenza virus, the pandemic H1N1 2009, emerged in Mexico in March this year. This virus acquired the ability for sustained human to human spread and within a few months spread throughout the world and infected over 4 lakh individuals. The symptoms of infection with this virus are similar to seasonal influenza but it currently affecting younger individuals more often. Fortunately the mortality has been low. Both these new influenza viruses are currently circulating and have different clinical and epidemiological characteristics.  相似文献   

5.
Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells.A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection.We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.  相似文献   

6.
To determine the role of the pandemic influenza A/H1N1 2009 (A/H1N1 2009pdm) in acute respiratory tract infections (ARTIs) and its impact on the epidemic of seasonal influenza viruses and other common respiratory viruses, nasal and throat swabs taken from 7,776 patients with suspected viral ARTIs from 2006 through 2010 in Beijing, China were screened by real-time PCR for influenza virus typing and subtyping and by multiplex or single PCR tests for other common respiratory viruses. We observed a distinctive dual peak pattern of influenza epidemic during the A/H1N1 2009pdm in Beijing, China, which was formed by the A/H1N1 2009pdm, and a subsequent influenza B epidemic in year 2009/2010. Our analysis also shows a small peak formed by a seasonal H3N2 epidemic prior to the A/H1N1 2009pdm peak. Parallel detection of multiple respiratory viruses shows that the epidemic of common respiratory viruses, except human rhinovirus, was delayed during the pandemic of the A/H1N1 2009pdm. The H1N1 2009pdm mainly caused upper respiratory tract infections in the sampled patients; patients infected with H1N1 2009pdm had a higher percentage of cough than those infected with seasonal influenza or other respiratory viruses. Our findings indicate that A/H1N1 2009pdm and other respiratory viruses except human rhinovirus could interfere with each other during their transmission between human beings. Understanding the mechanisms and effects of such interference is needed for effective control of future influenza epidemics.  相似文献   

7.
Zhang Y  Zhang Q  Gao Y  He X  Kong H  Jiang Y  Guan Y  Xia X  Shu Y  Kawaoka Y  Bu Z  Chen H 《Journal of virology》2012,86(18):9666-9674
Animal influenza viruses pose a clear threat to public health. Transmissibility among humans is a prerequisite for a novel influenza virus to cause a human pandemic. A novel reassortant swine influenza virus acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. However, the molecular aspects of influenza virus transmission remain poorly understood. Here, we show that an amino acid in hemagglutinin (HA) is important for the 2009 H1N1 influenza pandemic virus (2009/H1N1) to bind to human virus receptors and confer respiratory droplet transmissibility in mammals. We found that the change from glutamine (Q) to arginine (R) at position 226 of HA, which causes a switch in receptor-binding preference from human α-2,6 to avian α-2,3 sialic acid, resulted in a virus incapable of respiratory droplet transmission in guinea pigs and reduced the virus's ability to replicate in the lungs of ferrets. The change from alanine (A) to threonine (T) at position 271 of PB2 also abolished the virus's respiratory droplet transmission in guinea pigs, and this mutation, together with the HA Q226R mutation, abolished the virus's respiratory droplet transmission in ferrets. Furthermore, we found that amino acid 271A of PB2 plays a key role in virus acquisition of the mutation at position 226 of HA that confers human receptor recognition. Our results highlight the importance of both the PB2 and HA genes on the adaptation and transmission of influenza viruses in humans and provide important insights for monitoring and evaluating the pandemic potential of field influenza viruses.  相似文献   

8.
9.
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.  相似文献   

10.
11.
Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1) in 2009. The pathogenesis of these influenza-associated myopathies (IAM) remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1) isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes) were highly susceptible to infection by both influenza A(H1N1) isolates, whereas undifferentiated cells (i. e. myoblasts) were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP) expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.  相似文献   

12.
Several studies have highlighted the important role played by murine natural killer (NK) cells in the control of influenza infection. However, human NK cell responses in acute influenza infection, including infection with the 2009 pandemic H1N1 influenza virus, are poorly documented. Here, we examined changes in NK cell phenotype and function and plasma cytokine levels associated with influenza infection and vaccination. We show that absolute numbers of peripheral blood NK cells, and particularly those of CD56(bright) NK cells, decreased upon acute influenza infection while this NK cell subset expanded following intramuscular influenza vaccination. NK cells exposed to influenza antigens were activated, with higher proportions of NK cells expressing CD69 in study subjects infected with seasonal influenza strains. Vaccination led to increased levels of CD25+ NK cells, and notably CD56(bright) CD25+ NK cells, whereas decreased amounts of this subset were present in the peripheral blood of influenza infected individuals, and predominantly in study subjects infected with the 2009 pandemic H1N1 influenza virus. Finally, acute influenza infection was associated with low plasma concentrations of inflammatory cytokines, including IFN-γ, MIP-1β, IL-2 and IL-15, and high levels of the anti-inflammatory cytokines IL-10 and IL-1ra. Altogether, these data suggest a role for the CD56(bright) NK cell subset in the response to influenza, potentially involving their recruitment to infected tissues and a local production and/or uptake of inflammatory cytokines.  相似文献   

13.
14.
Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.The zoonotic potential of swine influenza viruses is well recognized (18), and pigs have been considered a leading candidate for the role of intermediate host in the generation of reassortant influenza A viruses with pandemic potential. This has been largely based on genomic analysis of influenza A viruses isolated from swine and the fact that α2,3-linked sialic acid (avian-like) and α2,6-linked sialic acid (human-like) receptors are both abundant in the swine respiratory tract (12). Despite this, there is no direct evidence that the reassortment of the 1957 and the 1968 human pandemic viruses occurred in pigs (28). Furthermore, it is very likely that the 1918 pandemic virus was introduced to pigs from humans (8, 31). The origins of influenza A viruses that have been isolated from pigs include those that are wholly human or avian, as well as reassortants containing swine, human, and avian genes (2, 20, 29). Although there have been several instances of swine-to-human transmission, for example, that of triple-reassortant swine influenza (H1) viruses (rH1N1), which appeared after 1998, they did not lead to establishment of sustained transmission in the human population (23).In the early spring of 2009, Mexico and the United States reported clusters of human pneumonia cases caused by a novel H1N1 influenza A virus. This virus subsequently spread across the globe at an unprecedented rate, prompting the WHO to declare a pandemic in June 2009. Phylogenetic analysis has inferred that the virus is likely a reassortant between a North American triple-reassortant swine H1N1 or H1N2 virus and a Eurasian lineage H1N1 swine influenza virus (7, 19). Bayesian molecular-clock analysis of each gene of this novel H1N1 virus (24) concluded that the mean evolutionary rate is typical of that of swine influenza viruses but that the duration of unsampled diversity for each gene segment had means that ranged from 9.24 to 17.15 years, suggesting that the proposed ancestors of this virus may have been circulating undetected for nearly a decade. Inadequate surveillance and characterization of influenza A viruses that circulate in swine have been blamed for this evolutionary gap.On 28 April 2009 the Canadian Food Inspection Agency (CFIA) became involved in a suspected outbreak of swine influenza on a pig farm in Leslieville, Alberta, Canada. The farm was a 220-sow farrow-to-finish operation consisting of approximately 2,200 animals that ranged from newborn piglets to market weight pigs. The animals were not vaccinated against swine influenza, and although there had been prior problems with porcine reproductive and respiratory syndrome virus and Mycoplasma hypopneumoniae, two etiologic agents of the swine respiratory disease complex, the herd had been stable with respect to respiratory disease. Beginning 20 April, approximately 25% of the pregrower and grower pigs in two of the barns exhibited respiratory problems with clinical signs that included an acute onset of coughing, lethargy, and loss of appetite. These clinical signs were preceded by the hiring of a carpenter on 14 April to work on the ventilation system in the same two barns. This individual had been ill for 2 days after his return from Mexico on 12 April (10). Given the evolving situation in Mexico and the United States, the CFIA and Alberta Agriculture and Rural Development decided to place the herd under quarantine and to carry out a full epidemiological and laboratory investigation.Here, we report on the characterization of the first pandemic H1N1 2009 viruses to be isolated from a naturally infected pig herd. Genetic sequence data from several viruses isolated from this outbreak have provided a glimpse into the mutation frequencies associated with replication of the virus in the swine host. Experimental infections of pigs comparing one of these swine isolates with the human isolate A/Mexico/InDRE4487/2009(H1N1) were also carried out and have provided insights into the pathobiological behavior of these viruses in pigs.  相似文献   

15.
In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.The novel swine origin 2009 influenza A (H1N1) virus was identified in April 2009, and it is currently causing the first influenza pandemic of the 21st century. The virus is a completely new reassortant virus (8, 38), and the majority of the human population does not have preexisting immunity against it. The case fatality rate of the current pandemic virus infection is still unclear, but it is estimated to be somewhat higher than that of seasonal influenza virus infections (8). In most cases, the pandemic 2009 A (H1N1) virus causes an uncomplicated respiratory tract illness with symptoms similar to those caused by seasonal influenza viruses. However, gastrointestinal symptoms atypical to seasonal influenza have been detected in a significant proportion of cases (4, 7, 35).The pandemic 2009 (H1N1) influenza A virus originates from a swine influenza A virus strain. It underwent multiple reassortment events in pigs and then transferred into the human population (8, 38). The new virus has gene segments from the North American triple-reassortant and Eurasian swine H1N1 viruses (8, 38). Sequence analysis of this new pandemic virus revealed that hemagglutinin (HA), NP, and NS gene segments are derived from the classical swine viruses, PB1 from human H3N2, and PB2 and PA from avian viruses within the triple-reassortant virus (8). In addition, the NA and M segments originate from the Eurasian swine virus lineage. The pandemic 2009 (H1N1) virus is genetically and antigenically distinct from previous seasonal human influenza A (H1N1) viruses. Thus, the current seasonal influenza vaccines are likely to give little, if any, protection against pandemic 2009 A (H1N1) virus infection (12, 14). However, some evidence indicates that people born early in the 20th century have cross-neutralizing antibodies against the pandemic 2009 A (H1N1) viruses (12, 14).At present, relatively little is known about the pathogenesis and transmission of the pandemic 2009 A (H1N1) virus in humans. Studies with ferrets revealed that the pandemic virus replicated better than seasonal H1N1 viruses in the respiratory tracts of the animals. This suggests that the virus is more pathogenic in ferrets than seasonal influenza viruses (19, 24). The respiratory tract is the primary infection site of all mammalian influenza viruses, and, indeed, the specific glycan receptors on the apical surface of the upper respiratory tract have been reported to bind HA of the 2009 A (H1N1) virus (19). In human lung tissue binding assays, 2009 A (H1N1) HA showed a glycan binding pattern similar to that of the HA from the pandemic 1918 A (H1N1) virus though its affinity to α2,6 glycans was much lower than that of the 1918 virus HA. The lower glycan binding properties of the pandemic 2009 A (H1N1) virus seemed to correlate with less-efficient transmission in ferrets compared to seasonal H1N1 viruses (19). According to another study with ferrets, the transmission of the pandemic 2009 A (H1N1) virus via respiratory droplets was as efficient as that of a seasonal A (H1N1) virus (24). It is clear that, besides experimental infections in animal models, analyses of the characters and pathogenesis of the pandemic 2009 A (H1N1) virus infection in humans are urgently needed.In the present study, we have focused on analyzing innate immune responses in primary human dendritic cells (DCs) and macrophages in response to an infection with one of the Finnish isolates of the pandemic 2009 A (H1N1) virus. DCs and macrophages reside beneath the epithelium of the respiratory organs, and these cells are thus potential targets for influenza viruses. From the epithelial cells influenza viruses spread in DCs and macrophages, which coordinate the development of an effective innate immune response against the virus (22, 34, 41). During influenza virus infection, DCs and macrophages secrete antiviral cytokines such as interferons (IFNs) and tumor necrosis factor alpha (TNF-α) (3, 13, 26). Moreover, DCs and macrophages activate virus-destroying NK cells and T cells with the cytokines they secrete and via direct cell-to-cell contacts (9, 29, 33, 37). Here we show that the pandemic (H1N1) virus infects and replicates very well in human monocyte-derived DCs and macrophages. The pandemic virus as well as two recent seasonal H1N1 viruses induced a relatively weak innate immune response in these cells, as evidenced by a poor expression of antiviral and proinflammatory cytokine genes. However, like seasonal influenza A viruses, the pandemic 2009 (H1N1) virus was extremely sensitive to the antiviral actions of type I IFNs (IFN-α/β). Interestingly, the pandemic 2009 (H1N1) virus was even more sensitive to antiviral IFN-λ3 than a seasonal A (H1N1) virus. Thus, IFNs may provide us with an additional means to combat severe pandemic influenza virus infections, especially if viral resistance against neuraminidase (NA) inhibitors begins to emerge.  相似文献   

16.
The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.  相似文献   

17.
Humans may be infected by different influenza A viruses-seasonal, pandemic, and zoonotic-which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these infections are poorly understood. Therefore, we inoculated ferrets with seasonal H3N2, pandemic H1N1 (pH1N1), and highly pathogenic avian H5N1 influenza virus and performed detailed virological and pathological analyses at time points from 0.5 to 14 days post inoculation (dpi), as well as describing clinical signs and hematological parameters. H3N2 infection was restricted to the nose and peaked at 1 dpi. pH1N1 infection also peaked at 1 dpi, but occurred at similar levels throughout the respiratory tract. H5N1 infection occurred predominantly in the alveoli, where it peaked for a longer period, from 1 to 3 dpi. The associated lesions followed the same spatial distribution as virus infection, but their severity peaked between 1 and 6 days later. Neutrophil and monocyte counts in peripheral blood correlated with inflammatory cell influx in the alveoli. Of the different parameters used to measure lower respiratory tract disease, relative lung weight and affected lung tissue allowed the best quantitative distinction between the virus groups. There was extra-respiratory spread to more tissues-including the central nervous system-for H5N1 infection than for pH1N1 infection, and to none for H3N2 infection. This study shows that seasonal, pandemic, and zoonotic influenza viruses differ strongly in the spatial and temporal dynamics of infection in the respiratory tract and extra-respiratory tissues of ferrets.  相似文献   

18.
Zhang Y  Sun H  Fan L  Ma Y  Sun Y  Pu J  Yang J  Qiao J  Ma G  Liu J 《PloS one》2012,7(1):e29347
BACKGROUND: Acute respiratory distress syndrome (ARDS) induced by pandemic 2009 H1N1 influenza virus has been widely reported and was considered the main cause of death in critically ill patients with 2009 H1N1 infection. However, no animal model has been developed for ARDS caused by infection with 2009 H1N1 virus. Here, we present a mouse model of ARDS induced by 2009 H1N1 virus. METHODOLOGY PRINCIPAL FINDINGS: Mice were inoculated with A/swine/Shandong/731/2009 (SD/09), which was a 2009 H1N1 influenza variant with a G222D mutation in the hemagglutinin. Clinical symptoms were recorded every day. Lung injury was assessed by lung water content and histopathological observation. Arterial blood gas, leukocyte count in the bronchial alveolar lavage fluid and blood, virus titers, and cytokine levels in the lung were measured at various times post-inoculation. Mice infected with SD/09 virus showed typical ARDS symptoms characterized by 60% lethality on days 8-10 post-inoculation, highly edematous lungs, inflammatory cellular infiltration, alveolar and interstitial edema, lung hemorrhage, progressive and severe hypoxemia, and elevated levels of proinflammatory cytokines and chemokines. CONCLUSIONS/SIGNIFICANCE: These results suggested that we successfully established an ARDS mouse model induced by a virulent 2009 H1N1 variant without previous adaptation, which may be of benefit for evaluating the pathogenesis or therapy of human ARDS caused by 2009 H1N1 virus.  相似文献   

19.
Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia. Due to their host-range diversity, genetic and antigenic diversity, and potential to reassort genetically in vivo, influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans. Thus, newly emerging viral diseases are always major threats to public health. In March 2009, a novel influenza virus suddenly emerged and caused a worldwide pandemic. The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses; it was identified to have originated from pigs, and further genetic analysis revealed it as a subtype of A/H1N1, thus later called a swine-origin influenza virus A/H1N1. Since the novel virus emerged, epidemiological surveys and research on experimental animal models have been conducted, and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated. In this editorial, we summarize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.  相似文献   

20.
F Krammer  N Pica  R Hai  GS Tan  P Palese 《Journal of virology》2012,86(19):10302-10307
Previously, it has been shown that infection in humans with the pandemic swine influenza virus induces antibodies with specificity to the stalk domain of the viral hemagglutinin. Following the generation of these data, we sought to recapitulate these findings in the mouse model by sequential influenza virus infection. Mice that were inoculated with a seasonal influenza H1N1 virus followed by infection with a pandemic H1N1 strain produced higher antihemagglutinin stalk antibody titers than mice sequentially infected with drifted seasonal strains. In order to achieve antibody titers of comparable magnitude using sequential infection, mice had to be infected with 100- to 1,000-fold more of the drifted seasonal virus. The antistalk antibodies produced by these infections were influenza virus neutralizing, which illustrates the utility of the mouse model in which to study this interaction between virus and host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号