首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 mug leptin/day from an intraperitoneal mini-osmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation. There was no effect of low-dose leptin infusions on either of these measures in LF-fed or HF-fed mice, even though LF-fed mice lost body fat. Experiment 2 tested leptin responsiveness in LF-fed and HF-fed mice housed at different temperatures (18 degrees C, 23 degrees C, 27 degrees C), assuming that the cold would increase and the hot environment would inhibit food intake and thermogenesis, which could potentially interfere with leptin action. LF-fed mice housed at 23 degrees C were the only mice that lost body fat during leptin infusion, suggesting that an ability to modify energy expenditure is essential to the maintenance of leptin responsiveness. HF-fed mice in cold or warm environments did not respond to leptin. HF-fed mice in the hot environment were fatter than other HF-fed mice, and, surprisingly, leptin caused a further increase in body fat, demonstrating that the mice were not totally leptin resistant and that partial leptin resistance in a hot environment favors positive energy balance and fat deposition.  相似文献   

2.
3.
能量代谢的适应性调节是小型哺乳动物应对环境季节性变化的主要策略之一。为探讨不同温度下动物在代谢产热能量支出与脂肪累积之间的权衡策略,以成年雄性黑线仓鼠为研究对象开展了3 个实验:实验1 将动物驯化于高脂和低脂食物;实验2 将动物暴露于低温(5℃)和暖温(30℃);实验3 将饲喂高脂食物的动物暴露于低温。以食物平衡法测定摄食量、摄入能和消化率,以开放式氧气分析仪测定代谢产热,以索氏抽提法测定脂肪含量。结果发现,取食高脂食物的黑线仓鼠摄食量显著减少,但脂肪累积显著增加;暖温下摄食量显著减少,但体脂含量显著增加,低温下摄食量显著升高,但体脂含量显著减少;饲喂高脂食物的黑线仓鼠在低温下摄入能显著增加,非颤抖性产热增强,但体脂含量显著降低。结果表明高脂食物对黑线仓鼠体脂累积的影响与环境温度有关,低温诱导脂肪动员,暖温促进脂肪贮存;低温下黑线仓鼠增加能量摄入不能完全补偿用于产热的能量支出,导致脂肪动员增加;暖温下代谢产热降低是脂肪累积的主要因素;与能量摄入相比代谢产热的能量支出在体脂累积的适应性变化中发挥更重要的作用。  相似文献   

4.
Obesity-resistant (A/J) and obesity-prone (C57BL/6J) mice were weaned onto low-fat (LF) or high-fat (HF) diets and studied after 2, 10, and 16 wk. Despite consuming the same amount of food, A/J mice on the HF diet deposited less carcass lipid and gained less weight than C57BL/6J mice over the course of the study. Leptin mRNA was increased in white adipose tissue (WAT) in both strains on the HF diet but to significantly higher levels in A/J compared with C57BL/6J mice. Uncoupling protein 1 (UCP1) and UCP2 mRNA were induced by the HF diet in brown adipose tissue (BAT) and WAT of A/J mice, respectively, but not in C57BL/6J mice. UCP1 mRNA was also significantly higher in retroperitoneal WAT of A/J compared with C57BL/6J mice. The ability of A/J mice to resist diet-induced obesity is associated with a strain-specific increase in leptin, UCP1, and UCP2 expression in adipose tissue. The findings indicate that the HF diet does not compromise leptin-dependent regulation of adipocyte gene expression in A/J mice and suggest that maintenance of leptin responsiveness confers resistance to diet-induced obesity.  相似文献   

5.
We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mitochondria isolated from interscapular brown adipose tissue (IBAT) and hindlimb muscle [known from prior work to contain ectopic brown adipose tissue (BAT) interspersed between muscle fibers] of obesity-resistant 129S6/SvEvTac (129) and obesity-prone C57BL/6 (B6) mice under conditions of low (LF) and high-fat (HF) feeding. With usual feeding, IBAT mitochondrial UCP1 content and proton conductance were greater in 129 mice than B6. However, with HF feeding, UCP1 and proton conductance increased more in B6 mice. Moreover, with HF feeding GDP-inhibitable proton conductance, specific for UCP1, equaled that seen in the 129 strain. UCP1 expression was substantial in mitochondria from hindlimb muscle tissue (ectopic BAT) of 129 mice as opposed to B6 but did not increase with HF feeding in either strain. As expected, muscle UCP3 expression increased with HF feeding in both strains but did not differ by strain. Moreover, the proton conductance of mitochondria isolated from hindlimb muscle tissue did not differ by strain or diet. Our data uncover a response to weight gain in obesity-prone (compared to resistant) mice unrecognized in prior studies that examined only UCP1 mRNA. Obesity-prone mice have the capacity to increase both IBAT UCP1 protein and mitochondrial proton conductance as much or more than obesity-resistant mice. But, this is only achieved only at a higher body mass and, therefore, may be adaptive rather than preventative. Neither obesity-prone nor resistant mice respond to HF feeding by expressing more UCP1 in ectopic BAT within muscle tissue.  相似文献   

6.
Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.  相似文献   

7.
UCP1 deficiency increases susceptibility to diet-induced obesity with age   总被引:1,自引:0,他引:1  
Loss of nonshivering thermogenesis in mice by inactivation of the mitochondrial uncoupling protein gene (Ucp1-/- mice) causes increased sensitivity to cold and unexpected resistance to diet-induced obesity at a young age. To clarify the role of UCP1 in body weight regulation throughout life and influence of UCP1 deficiency on longevity, we longitudinally analyzed the phenotypes of Ucp1-/- mice maintained in a room at 23 degrees C. There was no difference in body weight and lifespan between genotypes under the standard chow diet condition, whereas the mutant mice developed obesity with age under the high-fat (HF) diet condition. Compared with Ucp1+/+ mice, Ucp1-/- mice showed increased expression of genes related to thermogenesis and fatty acid metabolism, such as beta3-adrenergic receptor, in adipose tissues of the 3-month-old mutants; however, the augmented expression was reduced in Ucp1+/+ mice in 11-month-old Ucp1-/- mice fed the HF diet. Likewise, the increased levels of UCP3 and cAMP-dependent protein kinase in the brown adipose tissue of Ucp1-/- mice given the standard diet were decreased significantly in that of Ucp1-/- mice fed the HF diet, which animals showed impaired norepinephrine-induced lipolysis in their adipose tissues. These results suggest profound attenuation of beta-adrenergic responsiveness and fatty acid utilization in Ucp1-/- mice fed the HF diet, bringing them to late-onset obesity. Our findings provide evidence that UCP1 is neither essential for body weight regulation nor for longevity under conditions of standard diet and normal housing temperature, but deficiency increases susceptibility to obesity with age in combination with HF diet.  相似文献   

8.
Consumption of a high-fat diet decreases hypothalamic neuropeptide Y (NPY) and increases proopiomelanocortin (POMC) and brown adipose uncoupling protein (UCP)-1 mRNA in obesity-resistant SWR/J but not obesity-prone C57Bl/6J mice. Although leptin was elevated in both strains in response to a high-fat diet, its role in the development of diet-induced obesity has remained unclear since insulin and other factors that affect similar tissue targets are altered. Thus, we administered recombinant leptin by subcutaneous infusion to chow-fed mice to mimic the changes in plasma leptin across its broad physiologic range. We observed strain differences in responsiveness to reduced and elevated leptin levels. A reduction in leptin during fasting evoked a greater response in C57Bl/6J mice by decreasing energy expenditure and thyroxin, increasing corticosterone and stimulating food intake and weight gain during refeeding. However, C57Bl/6J mice were less responsive to an increase in leptin in the fed state. Conversely, the leptin-mediated response to fasting was blunted in SWR/J mice, whereas an increase in leptin profoundly reduced food intake and body weight in SWR/J mice fed ad libitum. Sensitivity to fasting in C57Bl/6J mice was associated with higher hypothalamic NPY mRNA and reduced POMC and UCP-1 mRNA expression, while the robust response to high leptin levels in SWR/J mice was associated with suppression of NPY mRNA. These results indicate that differences in leptin responsiveness between strains might occur centrally or peripherally, leading to alteration in the patterns of food intake, thermogenesis and energy storage.  相似文献   

9.
Although it is well established in animals that acute cold exposure markedly increases the oxidation of energy substrates, the absolute quality and quantity of substrate oxidation is poorly understood in humans. This study compared the rates of substrate utilization in seven healthy young men exposed to both the warm (control exposure at 29 degrees C; semi-nude, 14 h fasted) and to the cold for 2 h (10 degrees C, 1 m.s-1 wind velocity). Substrate utilization was calculated using indirect calorimetry and the nonprotein respiratory exchange ratio, which was derived from the urinary urea nitrogen output. Cold exposure induced a 3.1 +/- 0.2 degrees C drop in mean body temperature and a body heat debt of 825.9 +/- 63.3 kJ (p less than 0.01). These parameters remained essentially unchanged in the warm. Cold exposure elevated the 2 h energy expenditure 2.46-fold in comparison to the warm (p less than 0.01). This cold-induced thermogenesis was accompanied by increases of 588% in carbohydrate oxidation (p less than 0.01) and 63% in fat oxidation (p less than 0.05), whereas protein oxidation remained unchanged. Although the greatest proportion of the energy expenditure in the warm was derived from lipid (59%), carbohydrate oxidation represented the major fuel for thermogenesis in the cold, since it accounted for 51% of the corresponding total energy expenditure. The results demonstrate that cold exposure causes a much greater increase in the utilization of carbohydrate than lipid. It is suggested that these substrates are directly utilized for thermogenesis in the shivering skeletal muscles.  相似文献   

10.
Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold.   总被引:5,自引:0,他引:5  
Adaptive nonshivering thermogenesis may have profound effects on energy balance and is therefore therefore is a potential mechanism for counteracting the development of obesity. The molecular basis for adaptive nonshivering thermogenesis has remained a challenge that sparked acute interest with the identification of proteins (UCP2, UCP3, etc.) with high-sequence similarity to the original uncoupling protein-1 (UCP1), which is localized only in brown adipose tissue. Using UCP1-ablated mice, we examined whether any adaptive nonshivering thermogenesis could be recruited by acclimation to cold. Remarkably, by successive acclimation, the UCP1-ablated mice could be made to subsist for several weeks at 4C during which they had to constantly produce heat at four times their resting levels. Despite these extreme requirements for adaptive nonshivering thermogenesis, however, no substitution of shivering by any adaptive nonshivering thermogenic process occurred. Thus, although the existence of, for example, muscular mechanisms for adaptive nonshivering thermogenesis has recurrently been implied, we did not find any indication of such thermogenesis. Not even during prolonged and enhanced demand for extra heat production was any endogenous hormone or neurotransmitter able to recruit any UCP1-independent adaptive nonshivering thermogenic process in muscle or in any other organ, and no proteins other than UCP1-not even UCP2 or UCP3-therefore have the ability to mediate adaptive nonshivering thermogenesis in the cold.  相似文献   

11.
High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable.  相似文献   

12.
Apart from UCP1-based nonshivering thermogenesis in brown adipocytes, the identity of thermogenic mechanisms that can be activated to reduce a positive energy balance is largely unknown. To identify potentially useful mechanisms, we have analyzed physiological and molecular mechanisms that enable mice, genetically deficient in UCP1 and sensitive to acute exposure to the cold at 4 degrees C, to adapt to long term exposure at 4 degrees C. UCP1-deficient mice that can adapt to the cold have increased oxygen consumption and show increased oxidation of both fat and glucose as indicated from serum metabolite levels and liver glycogen content. Enhanced energy metabolism in inguinal fat was also indicated by increased oxygen consumption and fat oxidation in tissue suspensions and increased AMP kinase activity in dissected tissues. Analysis of gene expression in skeletal muscle showed surprisingly little change between cold-adapted Ucp1+/+ and Ucp1-/- mice, whereas in inguinal fat a robust induction occurred for type 2 deiodinase, sarcoendoplasmic reticulum Ca2+-ATPase, mitochondrial glycerol 3-phosphate dehydrogenase, PGC1alpha, CoxII, and mitochondrial DNA content. Western blot analysis showed an induction of total phospholamban and its phosphorylated form in inguinal fat and other white fat depots, but no induction was apparent in muscle. We conclude that alternative thermogenic mechanisms, based in part upon the enhanced capacity for ion and substrate cycling associated with brown adipocytes in white fat depots, are induced in UCP1-deficient mice by gradual cold adaptation.  相似文献   

13.
14.
Notwithstanding the fact that dietary branched-chain amino acids (BCAAs) have been considered to be a cause of insulin resistance (IR), evidence indicates that BCAA-rich whey proteins (WPs) do not lead to IR in animals consuming high-fat (HF) diets and may instead improve glucose homeostasis. To address the role of BCAA-rich WP as dietary protein in IR and inflammatory response, we fed C57BL/6J mice either high-fat (HF) or low-fat (LF) diets formulated with moderate protein levels (13% w/w) of either WP or hydrolyzed WP (WPH) and compared them with casein (CAS) as a reference. The muscle and plasma free amino acid profiles, inflammatory parameters and glycemic homeostasis were examined. While the LF/CAS diet promoted the rise in triglycerides and inflammatory parameters, the HF/CAS induced typical IR responses and impaired biochemical parameters. No differences in plasma BCAAs were detected, but the HF/WPH diet led to a twofold increase in gastrocnemius muscle free amino acids, including BCAAs. In general, ingestion of WPH was effective at averting or attenuating the damage caused by both the LF and HF diets. No high concentrations of BCAAs in the plasma or signs of IR were found in those mice fed an HF diet along with the hydrolyzed whey proteins. It is concluded that consumption of BCAA-rich whey proteins, especially WPH, does not result in the development of IR.  相似文献   

15.
Obesogenic and diabetogenic high fat (HF) diets can influence genetic factors in disease development with sexual dimorphic responses. We investigated potential protective effects of tart cherry (TC), fish oil (FO) and TC+FO supplementation in TALLYHO/Jng (TH) and C57BL/6J (B6) mice fed HF diets. Male and female TH and B6 mice were weaned onto five different diets; low fat (LF), HF, and HF supplemented with TC, FO, or TC+FO and maintained. For both males and females on LF, TH mice were heavier and fatter than B6, which was accentuated by HF in males, but not in females. TH males, but not others, developed severe glucose intolerance and hyperglycemia on HF, with reduced mRNA levels of Adipoq and Esr1 in adipose tissue. Considering energy balance, locomotor activity was lower in TH mice than B6 for both sexes without diet effects, except B6 females where HF decreased it. Compared to LF, HF decreased energy expenditure, RER, and food intake (in grams) for both sexes without strain differences. In all mice, but B6 males, HF increased plasma IL6 levels compared to LF. No preventive effects of TC, FO or TC+FO were noted for HF-induced obesity or energy imbalance, but FO alleviated glucose intolerance in TH males. Further, TC and FO decreased plasma IL6 levels, especially in females, without additive or synergistic effects of these two. Collectively, obesogenic and diabetogenic impacts of HF diets differed depending on the genetic predisposition. Moreover, sexually dimorphic effects of dietary supplementation were observed for glucose metabolism and inflammatory markers.  相似文献   

16.
17.
In their natural environment, burrowing rodents experience rather fluctuating ambient temperatures and are acutely cold exposed only for short periods outside their burrows. The effect of short daily cold exposure on basal metabolic rate, nonshivering thermogenesis, brown fat thermogenesis, and uncoupling protein mRNA was studied in the Djungarian hamster, Phodopus sungorus. They were kept at 23 degrees C and exposed to 5 degrees C daily either for one 4-h period or twice for 2 h (in 12-h intervals). At the same time control hamsters were kept continuously either at thermoneutrality (23 degrees C) or at 5 degrees C. Two 2-h cold exposures daily were sufficient to increase basal metabolic rate and nonshivering thermogenesis to the same level as continuous cold exposure, whereas one 4-h cold period per day did not result in a significant increase of both parameters. Brown fat thermogenesis (as measured by cytochrome-c oxidase activity and GDP binding to the mitochondrial uncoupling protein) increased to the same extent by both treatments with short daily cold exposure. However, this increase was less than in the chronically cold-exposed hamsters. A similar result was found for uncoupling protein mRNA: both short-term cold-exposed hamsters increased uncoupling protein mRNA levels to a similar extent, but less than after chronic cold treatment. It is concluded that short daily cold exposures are sufficient to cause adaptive increases of the capacity of metabolic heat production as well as brown fat thermogenic properties.  相似文献   

18.
Uncoupling protein-1 (UCP1) dissipates the transmitochondrial proton gradient as heat. UCP2 and UCP3 are two recently discovered homologues that also have uncoupling activity and thus presumably have a role in energy homeostasis. We now report the genomic structure of murine UCP3 (7 exons) and UCP2 (8 exons). UCP3 is approximately 8 kilobases upstream of UCP2. An UCP3 variant mRNA, UCP3S, was also found and characterized. The effect of a high fat diet (45% versus 10%) on UCP3 and UCP2 mRNA levels was measured. Eating the 45% fat diet for eight weeks caused greater weight gain in AKR and C57BL/6J mice than in the obesity-resistant A/J mice. The high fat diet increased muscle UCP3 expression twofold in C57BL/6J animals. UCP2 expression increased slightly on the 45% fat diet in white adipose of AKR mice, but not in A/J or C57BL/6J mice. In skeletal muscle, UCP2 expression showed little variation with diet. Thus, UCP2 and UCP3 expression levels change in response to diet-induced obesity, but the changes are modest and depend on the tissue and genotype. The data suggest that it is not a reduction in UCP2 or UCP3 expression that causes obesity in the susceptible mice.  相似文献   

19.
The incidence of the metabolic syndrome has reached epidemic levels in the Western world. With respect to the energy balance, most attention has been given to reducing energy (food) intake. Increasing energy expenditure is an important alternative strategy. Facultative thermogenesis, which is the increase in energy expenditure in response to cold or diet, may be an effective way to affect the energy balance. The recent identification of functional brown adipose tissue (BAT) in adult humans promoted a renewed interest in nonshivering thermogenesis (NST). The purpose of this review is to highlight the recent insight in NST, general aspects of its regulation, the major tissues involved, and its metabolic consequences. Sustainable NST in adult humans amounts to 15% of the average daily energy expenditure. Calculations based on the limited available literature show that BAT thermogenesis can amount to 5% of the basal metabolic rate. It is likely that at least a substantial part of NST can be attributed to BAT, but it is possible that other tissues contribute to NST. Several studies on mitochondrial uncoupling indicate that skeletal muscle is another potential contributor to facultative thermogenesis in humans. The general and synergistic role of the sympathetic nervous system and the thyroid axis in relation to NST is discussed. Finally, perspectives on BAT and skeletal muscle NST are given.  相似文献   

20.
Participation of brown adipose tissue [through the action of the uncoupling protein-1 (UCP1)] in adaptive adrenergic nonshivering thermogenesis is recognized, but the existence of a response to adrenergic stimulation in UCP1-ablated mice implies that a mechanism for an alternative adaptive adrenergic thermogenesis may exist. Here, we have used UCP1-ablated mice to examine the existence of an alternative adaptive adrenergic nonshivering thermogenesis, examined as the oxygen consumption response to systemically injected norepinephrine into anesthetized or conscious mice acclimated to different temperatures. We confirm that UCP1-dependent adrenergic nonshivering thermogenesis is adaptive, but we demonstrate that the adrenergic UCP1-independent thermogenesis is not recruitable by cold acclimation. Thus, at least in the mouse, no other proteins or enzymatic pathways exist that can participate in or with time take over the UCP1 mediation of adaptive adrenergic nonshivering thermogenesis, even in the total absence of UCP1. UCP1 is thus the only protein capable of mediating cold acclimation-recruited adaptive adrenergic nonshivering thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号