首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 150 毫秒
1.
蓝藻是具有内源性生物钟的简单生物.虽然蓝藻生物钟具有跟真核生物同样的基础特征,但其相关基因和蛋白质与真核生物没有同源性.蓝藻生物钟的核心是kai基因簇及其编码的蛋白KaiA,KaiB和KaiC.这三种Kai蛋白相互作用调节KaiC的磷酸化状态,从而产生昼夜节律信息.KaiC的磷酸化循环是昼夜节律的起博器,调控包括kai基因在内的相关基因的节律性表达.组氨酸蛋白激酶的磷酸化传递可将环境信息输入和将节律信息输出生物钟核心.  相似文献   

2.
3.
蓝藻虽为原核生物,但它也和真核生物一样具有生物 钟,它的固氮作用、光合作用、氨基酸吸收、细胞分裂以及基 因表达等生理代谢过程都受到生物钟的调控,具有昼夜节律 性。虽然蓝藻生物钟和真核生物钟一样,都以近24h的周期 运行,都具有温度补偿效应,光、温等环境因素都能重置生物 钟的时相,但组成蓝藻生物钟的钟蛋白与真核生物钟蛋白间 不具有任何同源性,蓝藻生物钟的计时机制也与真核生物钟 存在差异。蓝藻钟基因为一个基因簇kai,由三个基因 kaiA、kaiB、kaiC以单一拷贝成簇排列,Kai蛋白组成蓝藻生 物钟的核心即中央振荡器,其中KaiC蛋白的磷酸化状态是 中央振荡器产生周期性震荡的关键,它决定中央振荡器的时 相,而KaiC的磷酸化状态则受到KaiA和KaiB的调节。KaiA 是接受和整合环境信息的钟蛋白,具有N-端和C-端两个结 构域,N-端缺乏保守天冬氨酰残基的伪接受域能通过与输入 途径的某种蛋白(目前未知)发生相互作用而感受环境信号  相似文献   

4.
生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于k ai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻k aiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以k aiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的“源动力”的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。  相似文献   

5.
c-Jun/激活蛋白-1活性调节研究进展   总被引:3,自引:0,他引:3  
转录因子激活蛋白-1(AP-1)对细胞增殖、细胞存活与细胞凋亡等重要生理过程具有调控作用,其核心组成成分是c-Jun.c-Jun活性从转录调控、翻译后调控(主要是磷酸化调节)和相互作用蛋白质调节等三个水平受到正负向调控.其分子内8个位点可被JNK1、GSK3、CKII、Abl等激酶磷酸化.通过N端的转录激活结构域和C端的碱性亮氨酸拉链区,c-Jun可与bZIP类转录因子、辅助激活因子和其他一些蛋白质直接相互作用而被调控.另外一些分子可通过CBP、JAB1等重要辅助激活因子的介导间接调控AP-1的活性,共同构成AP-1活性调节的复杂网络.  相似文献   

6.
蛋白质组中蛋白质磷酸化研究进展   总被引:2,自引:0,他引:2  
Yang C  Wang ZG  Zhu PF 《生理科学进展》2004,35(2):119-124
随着后基因组时代的到来 ,对生命体器官、组织或细胞的全部蛋白质的表达、修饰及相互作用的研究已成为蛋白质组学的重要任务。蛋白质磷酸化是细胞内信号转导和酶调控最常见的机制之一 ,人类基因组约 2 %的基因编码 5 0 0种激酶和 10 0种磷酸酶。蛋白质磷酸化和去磷酸化作为原核和真核细胞表达调控的关键环节 ,了解其对功能的影响可以深入理解生命系统在分子水平的调控状况。目前蛋白质组磷酸化研究仍是功能基因组面临的重大课题 ,本文对此作一综述  相似文献   

7.
时间生物学主要是研究生物体内生理和行为的时间机制的学科,而这种机制主要是由生物钟调控的。研究表明,营养代谢的各个方面如葡萄糖转运、糖原异生、脂质合成及降解、氧化磷酸化等作用都受到生物钟核心转录机制的调控,并具有时间敏感性;相反,代谢信号也可以反馈调节生物钟系统,包括生物钟基因表达和行为活动。生物钟的紊乱会造成诸如心血管疾病、肥胖、糖尿病等多种疾病。本文从代谢与生物钟的相互关系、各类营养信号和营养素对生物钟的作用以及生物钟与营养代谢相关疾病的关系等多方面综述了哺乳动物营养代谢的时间生物学研究进展。  相似文献   

8.
抑癌基因PTEN及其在肿瘤中的突变失活   总被引:1,自引:0,他引:1  
正常细胞和肿瘤细胞的蛋白质磷酸化及去磷酸化研究一直引人注目。研究表明,细胞内蛋白质酪氨酸磷酸化水平受蛋白质酪氨酸激酶和蛋白质酪氨酸磷酸酶动态调控。多种癌基因的表达产物具有蛋白质酪氨酸激酶活性并参与肿瘤形成进程,提示蛋白质磷酸酪氨酸磷酸酶可能抑制肿瘤形...  相似文献   

9.
为了探明小峰熊蜂Bombus hypocrita蜂王蛹期发育蛋白质表达调控方面的特点,揭示其发育的分子机理。采用双向电泳法对小峰熊蜂蜂王蛹期发育进行蛋白质组研究,结果在小峰熊蜂蜂王蛹期的白眼期(A期)、褐眼期(B期)和黑眼期(C期)分别检测到81、80和75个蛋白点,特有蛋白质分别为8个、7个和2个,共有蛋白质为61个,A期到B期有4个蛋白质显著上调,5个显著下调,B期到C期有7个蛋白质显著上调,1个显著下调,A期到C期有10个蛋白质显著上调,有4个显著下调。此外,3个蛋白质是在A、B期表达C期关闭,6个蛋白质A、C期表达,B期关闭,5个蛋白质A期关闭,而B、C期表达。初步表明小峰熊蜂蜂王从蛹期发育到成蜂过程中,不仅需要一些保守蛋白质来调控,而且还需要一些特异蛋白质。  相似文献   

10.
结肠腺瘤性息肉病基因(adenomatous polyposis coli,APC)的突变导致家族性结肠息肉腺瘤病和散发性结肠癌,APC基因编码一个具有多个结构域、多种磷酸化状态的大分子蛋白质.APC蛋白可通过C段直接或间接与微管结合,同时还可以通过中段与微管结合,但其结合的机制目前还不清楚.为进一步研究APC与其他蛋白质的相互作用,利用酵母双杂交技术运用APC中段(1 500 bp~4 800 bp)构建诱饵质粒,筛选人胎脑cDNA文库,得到一个与APC相互作用的蛋白SMAP/KAP3,SMAP/KAP3是驱动蛋白KIF3A/3B的相关蛋白.通过免疫共沉淀和双色免疫荧光共定位的方法,证实了APC与SMAP/KAP3在体内的相互作用,提示APC可能通过SMAP/KAP3-KIF3A/B参与沿微管的运动.  相似文献   

11.
In the cyanobacteria Synechococcus elongatus and Thermosynechococcus elongatus, the KaiA, KaiB and KaiC proteins in the presence of ATP generate a post-translational oscillator (PTO) that can be reconstituted in vitro. KaiC is the result of a gene duplication and resembles a double doughnut with N-terminal CI and C-terminal CII hexameric rings. Six ATPs are bound between subunits in both the CI and CII ring. CI harbors ATPase activity, and CII catalyzes phosphorylation and dephosphorylation at T432 and S431 with a ca. 24-h period. KaiA stimulates KaiC phosphorylation, and KaiB promotes KaiC subunit exchange and sequesters KaiA on the KaiB-KaiC interface in the final stage of the clock cycle. Studies of the PTO protein-protein interactions are convergent in terms of KaiA binding to CII but have led to two opposing models of the KaiB-KaiC interaction. Electron microscopy (EM) and small angle X-ray scattering (SAXS), together with native PAGE using full-length proteins and separate CI and CII rings, are consistent with binding of KaiB to CII. Conversely, NMR together with gel filtration chromatography and denatured PAGE using monomeric CI and CII domains support KaiB binding to CI. To resolve the existing controversy, we studied complexes between KaiB and gold-labeled, full-length KaiC with negative stain EM. The EM data clearly demonstrate that KaiB contacts the CII ring. Together with the outcomes of previous analyses, our work establishes that only CII participates in interactions with KaiA and KaiB as well as with the His kinase SasA involved in the clock output pathway.  相似文献   

12.
KaiA, KaiB, and KaiC are essential proteins of the circadian clock in the cyanobacterium Synechococcus elongatus PCC 7942. The phosphorylation cycle of KaiC that occurs in vitro after mixing the three proteins and ATP is thought to be the master oscillation governing the circadian system. We analyzed the temporal profile of complexes formed between the three Kai proteins. In the phosphorylation phase, KaiA actively and repeatedly associated with KaiC to promote KaiC phosphorylation. High levels of phosphorylation of KaiC induced the association of the KaiC hexamer with KaiB and inactivate KaiA to begin the dephosphorylation phase, which is closely linked to shuffling of the monomeric KaiC subunits among the hexamer. By reducing KaiC phosphorylation, KaiB dissociated from KaiC, reactivating KaiA. We also confirmed that a similar model can be applied in cyanobacterial cells. The molecular model proposed here provides mechanisms for circadian timing systems.  相似文献   

13.
The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by the KaiA, KaiB and KaiC proteins in the presence of ATP. The principal clock component, KaiC, undergoes regular cycles between hyper- and hypo-phosphorylated states with a period of ca. 24 h that is temperature compensated. KaiA enhances KaiC phosphorylation and this enhancement is antagonized by KaiB. Throughout the cycle Kai proteins interact in a dynamic manner to form complexes of different composition. We present a three-dimensional model of the S. elongatus KaiB-KaiC complex based on X-ray crystallography, negative-stain and cryo-electron microscopy, native gel electrophoresis and modelling techniques. We provide experimental evidence that KaiB dimers interact with KaiC from the same side as KaiA and for a conformational rearrangement of the C-terminal regions of KaiC subunits. The enlarged central channel and thus KaiC subunit separation in the C-terminal ring of the hexamer is consistent with KaiC subunit exchange during the dephosphorylation phase. The proposed binding mode of KaiB explains the observation of simultaneous binding of KaiA and KaiB to KaiC, and provides insight into the mechanism of KaiB's antagonism of KaiA.  相似文献   

14.
15.
Cyanobacteria are photosynthetic prokaryotes that possess circadian oscillators. Clock proteins, KaiA, KaiB, KaiC compose the central circadian oscillator, which can be reconstituted in vitro in the presence of ATP. KaiC has ATPase, autokinase, and autophosphatase enzymatic activities. These activities are modulated by protein–protein interactions among the Kai proteins. The interaction of KaiB with the KaiC complex shows a circadian rhythm in the reconstituted system. We previously developed a quantitative, real-time monitoring system for the dynamic behavior of the complex using fluorescence correlation spectroscopy. Here, we examined the effects of ATP and ADP on the rhythmic interaction of KaiB. We show that increased concentration of ATP or ADP shortened period length. Adding ADP to the Kai protein oscillation shifted its phase in a phase-dependent manner. These results provide insight into how circadian oscillation entrainment mechanism is linked to cellular metabolism.  相似文献   

16.
In the cyanobacterium Synechococcus elongatus PCC 7942, the KaiA, KaiB and KaiC proteins are essential for generation of circadian rhythms. We quantitatively analyzed the intracellular dynamics of these proteins and found a circadian rhythm in the membrane/cytosolic localization of KaiB, such that KaiB interacts with a KaiA-KaiC complex during the late subjective night. KaiB-KaiC binding is accompanied by a dramatic reduction in KaiC phosphorylation and followed by dissociation of the clock protein complex(es). KaiB attenuated KaiA-enhanced phosphorylation both in vitro and in vivo. Based on these results, we propose a novel role for KaiB in a regulatory link among subcellular localization, protein-protein interactions and post-translational modification of Kai proteins in the cyanobacterial clock system.  相似文献   

17.
Cyanobacteria are the simplest organisms known that exhibit circadian rhythms. The mechanism of circadian rhythm generation in cyanobacteria is different from eukaryotes. Based on the recent experiments about the interaction of KaiA, KaiB, and KaiC proteins with the generation of circadian rhythms in vitro, we developed a mathematical model to describe post-translational oscillations and the possible chemical reactions involved in the circadian clock mechanism of cyanobacteria. In this model, a series of differential equations, with linear kinetics for binding of proteins, Michaelis - Menten kinetics for enzymatic processes and a term including an explicit delay for dissociation of the KaiA/KaiB/phospho-KaiC complex, are proposed describing the dynamics of the chemistry. It is demonstrated that the mathematical system can lead to circadian oscillation within a range of parameter values.  相似文献   

18.
In vitro incubation of three Kai proteins, KaiA, KaiB, and KaiC, with ATP induces a KaiC phosphorylation cycle that is a potential circadian clock pacemaker in cyanobacterium Synechococcus elongatus PCC 7942. The Kai proteins assemble into large heteromultimeric complexes (periodosome) to effect a robust oscillation of KaiC phosphorylation. Here, we report real-time measurements of the assembly/disassembly dynamics of the Kai periodosome by using small-angle X-ray scattering and determination of the low-resolution shapes of the KaiA:KaiC and KaiB:KaiC complexes. Most previously identified period-affecting mutations could be mapped to the association interfaces of our complex models. Our results suggest that the assembly/disassembly processes are crucial for phase entrainment in the early synchronizing stage but are passively driven by the phosphorylation status of KaiC in the late oscillatory stage. The Kai periodosome is assembled in such a way that KaiA and KaiB are recruited to a C-terminal region of KaiC in a phosphorylation-dependent manner.  相似文献   

19.
Biochemical circadian oscillation of KaiC phosphorylation, by mixing three Kai proteins and ATP, has been proven to be the central oscillator of the cyanobacterial circadian clock. In vivo, the intracellular levels of KaiB and KaiC oscillate in a circadian fashion. By scrutinizing KaiC phosphorylation rhythm in a wide range of Kai protein concentrations, KaiA and KaiB were found to be “parameter-tuning” and “state-switching” regulators of KaiC phosphorylation rhythm, respectively. Our results also suggest a possible entrainment mechanism of the cellular circadian clock with the circadian variation of intracellular levels of Kai proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号