首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soil bacterium able to undergo multicellular development and a coordinated gliding in swarms, requires an accurate regulatory network of phosphorelay proteins. Inorganic phosphate is a limiting nutrient in soil and its importance in regulation is critical. As a step towards studying phosphate regulation and its influence in the developmental process in this bacterium, we screened a Myxococcus xanthus library for clones with phosphatase activity, and found four different ones. The deduced sequence of one of the cloned inserts is similar to that of the classic transmembrane histidine protein kinase of the sensor family of the two-component signal transduction systems with a high sequence similarity to the sensor kinase in the Pho regulon of Bacillus subtilis PhoR. This gene has been named phoR1 and its deduced amino acid sequence consists of 455 residues with a predicted molecular mass of 48.5 kDa. The M. xanthus PhoR1 deduced sequence contains all the characteristic histidine protein kinase motifs in the same order and with the same spacing. A hydropathy profile indicates two membrane-spanning segments located at the extreme N-terminus, according to the putative sensor role of this domain. A gene-disrupted mutant is unable to produce normal mature fruiting bodies and produces fewer spores. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
CdnL, a 164-residue protein essential for Myxococcus xanthus viability, is a member of a large family of bacterial proteins of unknown structure and function. Here, we report the 1H, 13C and 15N backbone and side chain assignments for the stable C-terminal domain of CdnL identified by limited proteolysis.  相似文献   

3.

Background  

Acinetobacter baumannii is a multidrug-resistant bacterium responsible for nosocomial infections in hospitals worldwide. Study of mutant phenotypes is fundamental for understanding gene function. The methodologies developed to inactivate A. baumannii genes are complicated and time-consuming; sometimes result in unstable mutants, and do not enable construction of double (or more) gene knockout mutant strains of A. baumannii.  相似文献   

4.
Summary The gram-negative soil bacterium Myxococcus xanthus was immobilized by entrapping into carrageenan gel beads. Unexpectedly, the growth rate was hardly increased, and the released free cell concentration remained low. However, extracellular proteolytic and bacteriolytic activities produced in the medium or inside the beads was greatly increased and (or) stabilized as compared to the control. These properties might be quite useful in view of using Myxococcus xanthus as a cloning vehicle for secretion of foreign proteins.  相似文献   

5.
6.
Summary Serratia marcescens and Myxococcus xanthus cells were immobilized in calcium alginate gel beads. Immobilization under various conditions had no effect on the extracellular proteolytic activity of S. marcescens cells. Protease production seemed rather to depend on the free cells in the medium. However, the stability over time of enzyme production was enhanced, as immobilization increased protease production half-life from 5 to 12 days. On the other hand, Myxococcus xanthus produced proteases inside the gel beads which could diffuse into the medium. The proteolytic activity increased as a function of the initial cell content of the beads and of the bead inoculum. Compared to free cells, immobilized cells of Myxococcus xanthus could produce 8 times more proteolytic activity, with a very low free-cell concentration in the medium.  相似文献   

7.
分析亚胺培南、头孢哌酮-舒巴坦、头孢曲松、左氧氟沙星、庆大霉素5种临床常用鲍曼不动杆菌治疗的抗生素单用和分别与替加环素联用的体外敏感性实验的研究,以期发现较好的联合用药方案,为临床合理使用抗生素提供用药参考。采用微量肉汤稀释法测定5种抗生素对鲍曼不动杆菌的MIC值,再采用棋盘法测定5种抗生素分别与替加环素联用MIC值,并计算FIC指数。结果显示,替加环素与亚胺培南、头孢哌酮舒巴坦、左氧氟沙星、头孢曲松具有协同和相加作用,替加环素与庆大霉素具有拮抗作用。临床在选择抗生素治疗鲍曼不动杆菌所引起的重症感染时,可根据该药敏实验结果与亚胺培南或头孢哌酮舒巴坦或左氧氟沙星或头孢曲松与替加环素联合使用,但应避免与庆大霉素联合使用。  相似文献   

8.
Bacteriophages for Myxococcus xanthus of similar morphology to phage Mx4 were isolated from cultures of a variety of myxobacterial species. Phages similar to Mx1 and Mx8 were obtained by infecting M. xanthus with one of the phages of the Mx4 group that had been treated with either UV light or a chemical mutagen.The DNA molecules from the phages were characterized by electron microscopy. One phage, Mx113, contains an unusual type of terminal redundancy revealed by examination of denatured and re-annealed DNA.Several of the phages of the Mx4 group and the other two new phages, Mx113 and Mx811, were found capable of transducing genetic markers in M. xanthus.One phage, Mx416, was characterized in more detail. It establishes true lysogens in M. xanthus; the phage plaques on both a non-motile mutant and also on a wild-type host although it is restricted in the latter.We dedicate this paper to Professor Dr. Hans Kühlwein in the year of his retirement and in recognition of his many contributions to the study of Myxobacteria  相似文献   

9.
10.
Acinetobacter baumannii is a Gram-negative pathogen responsible for severe nocosomial infections by forming biofilms in healthcare environments. The two-domain response regulator BfmR has been shown to be the master controller for biofilm formation. Inactivation of BfmR resulted in an abolition of pili production and consequently biofilm creation. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the C-terminal domain of BfmR (residues 130–238) from A. baumannii.  相似文献   

11.
Acinetobacter baumannii, an important nosocomial pathogen, is increasingly becoming resistant to antibiotics including recent β-lactam like imipenem. Production of different types of β-lactamases is one of the major resistance mechanisms which bacteria adapt. We recently reported the presence of a β-lactamase, OXA-51, in clinical strains of A. baumannii in ICUs of our hospital. This study is an attempt to understand the structure–function relationship of purified OXA-51 in carbapenem resistance in A. baumannii. The OXA-51 was cloned, expressed in E. coli Bl-21(DE3) and further purified. The in vitro enzyme activity of purified OXA-51 was confirmed by two independent techniques; in-gel assay and spectrophotometric method using nitrocefin. Further in vivo effect of OXA-51 was followed by transmission electron microscopy of bacterium. Biophysical and biochemical investigations of OXA-51 were done using LC-MS/MS, UV–Vis absorption, fluorescence, circular dichroic spectroscopy and isothermal calorimetry. Native OXA-51 was characterized as 30.6?kDa, pI 8.43 with no disulphide bonds and comprising of 30% α-helix, 27% β-sheet. Secondary structure of OXA-51 was significantly unchanged in broad pH (4–10) and temperature (30–60?°C) range with only local alterations at tertiary structural level. Interestingly, enzymatic activity up to 75% was retained under above conditions. Hydrolysis of imipenem by OXA-51 (km,1?μM) was found to be thermodynamically favourable. In the presence of imipenem, morphology of sensitive strain of A. baumannii was drastically changed, while OXA-51-transformed sensitive strain retained the stable coccobacillus shape, which demonstrates that imipenem is able to kill sensitive strain but is unable to do so in OXA-51-transformed strain. Hence the production of pH- and temperature-stable OXA-51 appears to be a major determinant in the resistance mechanisms adopted by A. baumannii in order to evade even the latest β-lactams, imipenem. It can be concluded from the study that OXA-51 plays a vital role in the survival of the pathogen under stress conditions and thus poses a major threat.  相似文献   

12.
抗菌药物耐药是目前全世界面临的重要公共卫生问题之一,亟需开发有效的广谱抗菌药物以应对多重耐药革兰阴性杆菌的感染。头孢地尔是日本Shionogi公司开发的新型铁载体头孢菌素类抗菌药物。该药物对碳青霉烯耐药的肠杆菌目细菌(carbapenem resistant Enterobacterales,CRE)、铜绿假单胞菌、鲍曼不动杆菌和嗜麦芽窄食单胞菌等具有广谱强效的抗菌活性。该药物克服了革兰阴性杆菌因外膜孔道蛋白表达量下调和主动外排泵表达量上调产生的耐药性,并对丝氨酸酶和金属碳青霉烯酶具有较好的稳定性。该药可用于治疗由革兰阴性杆菌引起的复杂性尿路感染(包括肾盂肾炎)、院内获得性肺炎和呼吸机相关性肺炎。文中通过汇总头孢地尔的化学结构、抗菌作用机制、体外抗菌活性、药代动力学、药效学和临床治疗等信息,展现头孢地尔作为新型铁载体头孢菌素在治疗多重耐药革兰阴性杆菌感染中的应用前景。  相似文献   

13.
Pathogenic Gram-negative bacteria are a major public health concern because they are causative agents of life-threatening hospital-acquired infections. Due to the increasing rates of resistance to available antibiotics, there is an urgent need to develop new drugs. Acetyl-coenzyme A carboxylase (ACCase) is a promising target for the development of novel antibiotics. We describe here the expression, purification, and enzymatic activity of recombinant ACCases from two clinically relevant Gram-negative pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Recombinant ACCase subunits (AccAD, AccB, and AccC) were expressed and purified, and the holoenzymes were reconstituted. ACCase enzyme activity was monitored by direct detection of malonyl-coenzyme A (malonyl-CoA) formation by liquid chromatography tandem mass spectrometry (LC–MS/MS). Steady-state kinetics experiments showed similar kcat and KM values for both enzymes. In addition, similar IC50 values were observed for inhibition of both enzymes by a previously reported ACCase inhibitor. To provide a higher throughput assay suitable for inhibitor screening, we developed and validated a luminescence-based ACCase assay that monitors ATP depletion. Finally, we established an enzyme activity assay for the isolated AccAD (carboxyltransferase) subunit, which is useful for determining whether novel ACCase inhibitors inhibit the biotin carboxylase or carboxyltransferase site of ACCase. The methods described here could be applied toward the identification and characterization of novel inhibitors.  相似文献   

14.
Myxococcus xanthus, a gram-negative bacterium exhibits a spectacular life cycle and social behavior. Its developmental cycle and multicellular morphogenesis resemble those of eukaryotic slime molds such as Dictyostelium discoideum. On the basis of this resemblance, we explored the existence of eukaryotic-like protein serine/threonine kinases which are known to play important roles in signal transduction during development of D. discoideum. It was indeed found that M. xanthus contains a large family of protein serine/threonine kinases related to the eukaryotic enzymes. This is the first unambiguous demonstration of eukaryotic-like protein serine/threonine kinases in the prokaryotes. © 1993 Wiley-Liss, Inc.  相似文献   

15.
This paper deals with silver sorption to Myxococcus xanthus biomass. The dry biomass of this microorganism is shown to be a good sorbent for the recovery of silver present at low solution concentrations. Between initial silver concentrations of 2 and 0.05 mM, the percentage of accumulation ranges from 8.12% to 75% of the total silver present in the solution. Transmission electron microscopy study of M. xanthus wet biomass after silver accumulation shows the sorption within the extracellular polysaccharide, on the cell wall, and in the cytoplasm. The presence of silver deposits in the cytoplasm indicates that at least two mechanisms are involved in silver sorption by this bacterium biomass. First, silver was bound to the cell surface and extracellular polysaccharide, and second, a silver intracellular deposition process took place. The higher amount of silver deposits in the extracellular polysaccharide, present abundantly in M. xanthus cells, explains the capacity of this bacterium to bind silver efficiently. The results obtained indicate that the removal of silver by M. xanthus from the diluted solutions could be used in recycling this valuable metal. One interesting observation of this investigation is the crystalline form, possibly as chlorargyrite, in which the silver deposits are found in the M. xanthus cells.  相似文献   

16.
Chemotaxis plays a role in the social behaviour of Myxococcus xanthus   总被引:11,自引:2,他引:9  
Myxococcus xanthus is a Gram-negative bacterium that glides on a solid surface and displays a wide range of social behaviour including microbial development. The frz genes are homologues to the chemotaxis genes of Escherichia coli and Salmonella typhimurium and have been shown to be involved in microbial development. However, chemotaxis has never been clearly demonstrated in Myxococcus. In this study, we showed that M. xanthus exhibited tactic movements to many chemicals when they were subjected to steep and stable chemical gradients. M. xanthus was observed to spread into areas with abundant nutrients like yeast extract or Casitone and avoid areas with no nutrients or repellents (short-chain alcohols or DMSO. Responses to attractants and repellents were additive. Movement towards attractants or away from repellents required the frz genes and was correlated with methylation or demethylation of FrzCD, a methyl-accepting taxis protein. Furthermore, the frz genes were found to be required for both fruiting body formation during starvation and swarming in nutrient-rich medium. In wild-type strains, cells near the colony edge were observed to swarm towards the surrounding growth medium and to contain highly methylated FrzCD; cells near the colony centre contained mainly demethylated FrzCD and showed directed movement towards the colony edge. FrzCD was also found to be methylated during the aggregation stage of fruiting body formation on agar but largely demethylated in cells shaken in liquid starvation media. An frzf mutant failed to exhibit directed cell movements and no longer showed modification of FrzCD under these conditions. These observations suggest that M. xanthus does show chemotactic movements, that these movements require the frz genes, and that chemotaxis plays a very important role in the social behaviour of this organism.  相似文献   

17.
Myxococcus xanthus is a Gram‐negative bacterium capable of complex developmental processes involving vegetative swarming and fruiting body formation. Social (S‐) gliding motility, one of the two motility systems used by M. xanthus, requires at least two cell surface structures: type IV pili (TFP) and extracellular polysaccharides (EPS). Extended TFP that are composed of thousands of copies of PilA retract upon binding to EPS and thereby pull the cell forward. TFP also act as external sensor to regulate EPS production. In this study, we generated a random PilA mutant library and identified one derivative, SW1066, which completely failed to undergo developmental processes. Detailed characterization revealed that SW1066 produced very little EPS but wild‐type amounts of PilA. These mutated PilA subunits, however, are unable to assemble into functional TFP despite their ability to localize to the membrane. By preventing the mutated PilA of SW1066 to translocate from the cytoplasm to the membrane, fruiting body formation and EPS production were restored to the levels observed in mutant strains lacking PilA. This apparent connection between PilA membrane accumulation and reduction in surface EPS implies that specific cellular PilA localization are required to maintain the EPS level necessary to sustain normal S‐motility in M. xanthus.  相似文献   

18.
Summary Several strains of the protein-secreting, Gram negative bacterium Myxococcus xanthus were immobilized in carrageenan beads and the production of extracellular proteins was followed.The extracellular proteolytic activity was enhanced and concentrated in the beads. In contrast, the amount of total protein secreted by the cells was not modified by immobilization, but it was also retained and concentrated in the beads, the more, the harder the gel. The amount of slime produced by the cells did not seem to influence protein retention.Foreign proteins expressed from genes cloned in Myxococcus xanthus chromosome can be secreted into the medium by immobilized recombinant strains. A polygalacturonate lyase, expressed from the pelC gene from Erwinia chrysanthemi was only detectable outside of the beads. The pH 2.5 acid phosphatase expressed from the appA gene from Escherichia coli was secreted by immobilized cells at the same rate than did the free cells. It was predominantly found in the medium outside of the beads which represented a first purification and facilitated the continuous production of this protein by immobilized recombinant cells packed in a reactor.  相似文献   

19.
In this study, we investigated under laboratory conditions the bacterial communities inhabiting quarry and decayed ornamental carbonate stones before and after the application of a Myxococcus xanthus-inoculated culture medium used for consolidation of the stones. The dynamics of the community structure and the prevalence of the inoculated bacterium, M. xanthus, were monitored during the time course of the consolidation treatment (30 days). For this purpose, we selected a molecular strategy combining fingerprinting by denaturing gradient gel electrophoresis (DGGE) with the screening of eubacterial 16S rDNA clone libraries by DGGE and sequencing. Quantification of the inoculated strain was performed by quantitative real-time PCR (qPCR) using M. xanthus-specific primers designed in this work. Results derived from DGGE and sequencing analysis showed that, irrespective of the origin of the stone, the same carbonatogenic microorganisms were activated by the application of a M. xanthus culture. Those microorganisms were Pseudomonas sp., Bacillus sp., and Brevibacillus sp. The monitoring of M. xanthus in the culture media of treated stones during the time course experiment showed disparate results depending on the applied technique. By culture-dependent methods, the detection of this bacterium was only possible in the first day of the treatment, showing the limitation of these conventional techniques. By PCR-DGGE analysis, M. xanthus was detected during the first 3–6 days of the experiment. At this time, the population of this bacterium in the culture media varied between 108–106 cells ml−1, as showed by qPCR analyses. Thereafter, DGGE analyses showed to be not suitable for the detection of M. xanthus in a mixed culture. Nevertheless, qPCR analysis using specific primers for M. xanthus showed to be a more sensitive technique for the detection of this bacterium, revealing a population of 104 cells ml−1 in the culture media of both treated stones at the end of the consolidation treatment. The molecular strategy used in this study is proposed as an effective monitoring system to evaluate the impact of the application of a bacterially induced carbonate mineralization as restoration/conservation treatment for ornamental stones.  相似文献   

20.
Myxococcus xanthus is a model bacterium to study social behavior. At the cellular level, the different social behaviors of M. xanthus involve extensive cell–cell contacts. Here, we used bioinformatics, genetics, heterologous expression and biochemical experiments to identify and characterize the key enzymes in M. xanthus implicated in O‐antigen and lipopolysaccharide (LPS) biosynthesis and examined the role of LPS O‐antigen in M. xanthus social behaviors. We identified WbaPMx (MXAN_2922) as the polyisoprenylphosphate hexose‐1‐phosphate transferase responsible for priming O‐antigen synthesis. In heterologous expression experiments, WbaPMx complemented a Salmonella enterica mutant lacking the endogenous WbaP that primes O‐antigen synthesis, indicating that WbaPMx transfers galactose‐1‐P to undecaprenyl‐phosphate. We also identified WaaLMx (MXAN_2919), as the O‐antigen ligase that joins O‐antigen to lipid A‐core. Our data also support the previous suggestion that WzmMx (MXAN_4622) and WztMx (MXAN_4623) form the Wzm/Wzt ABC transporter. We show that mutations that block different steps in LPS O‐antigen synthesis can cause pleiotropic phenotypes. Also, using a wbaPMx deletion mutant, we revisited the role of LPS O‐antigen and demonstrate that it is important for gliding motility, conditionally important for type IV pili‐dependent motility and required to complete the developmental program leading to the formation of spore‐filled fruiting bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号