首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the past few years, insensitive attentions have been drawn to wearable and flexible energy storage devices/systems along with the emergence of wearable electronics. Much progress has been achieved in developing flexible electrochemical energy storage devices with high end‐use performance. However, challenges still remain in well balancing the electrochemical properties, mechanical properties, and the processing technologies. In this review, a specific perspective on the development of textile‐based electrochemical energy storage devices (TEESDs), in which textile components and technologies are utilized to enhance the energy storage ability and mechanical properties of wearable electronic devices, is provided. The discussion focuses on the material preparation and characteristics, electrode and device fabrication strategies, electrochemical performance and metrics, wearable compatibility, and fabrication scalability of TEESDs including textile‐based supercapacitors and lithium‐ion batteries.  相似文献   

2.
3.
This study presents a battery concept with a “mediator‐ion” solid electrolyte for the development of next‐generation electrochemical energy storage technologies. The active anode and cathode materials in a single cell can be in the solid, liquid, or gaseous form, which are separated by a sodium‐ion solid‐electrolyte separator. The uniqueness of this mediator‐ion strategy is that the redox reactions at the anode and the cathode are sustained by a shuttling of a mediator sodium ion between the anolyte and the catholyte through the solid‐state electrolyte. Use of the solid‐electrolyte separator circumvents the chemical‐crossover problem between the anode and the cathode, overcomes the dendrite‐problem when employing metal‐anodes, and offers the possibility of using different liquid electrolytes at the anode and the cathode in a single cell. The battery concept is demonstrated with two low‐cost metal anodes (zinc and iron), two liquid cathodes (bromine and potassium ferricyanide), and one gaseous cathode (air/O2) with a sodium‐ion solid electrolyte. This novel battery strategy with a mediator‐ion solid electrolyte is applicable to a wide range of electrochemical energy storage systems with a variety of cathodes, anodes, and mediator‐ion solid electrolytes.  相似文献   

4.
5.
6.
Photo‐electrochemical (PEC) solar energy conversion offers the promise of low‐cost renewable fuel generation from abundant sunlight and water. In this Review, recent developments in photo‐electrochemical water splitting are discussed with respect to this promise. State‐of‐the‐art photo‐electrochemical device performance is put in context with the current understanding of the necessary requirements for cost‐effective solar hydrogen generation (in terms of solar‐to‐hydrogen conversion efficiency and system durability, in particular). Several important studies of photo‐electrochemical hydrogen generation at p‐type photocathodes are highlighted, mostly with protection layers (for enhanced durability), but also a few recent examples where protective layers are not needed. Recent work with the widely studied n‐type BiVO4 photoanode is detailed, which highlights the needs and necessities for the next big photoanode material yet to be discovered. The emerging new research direction of photo‐electrocatalytic upgrading of biomass substrates toward value‐added chemicals is then discussed, before closing with a commentary on how research on PEC materials remains a worthwhile endeavor.  相似文献   

7.
Heteroatom‐doped porous carbon materials have attracted much attention because of their extensive application in energy conversion and storage devices. Because the performance of fuel cells and the rate capability of supercapacitors depend significantly on multiple factors, such as electrical conductivity and transport rate of ions and reactants, designing these carbon‐based materials to optimize performance factors is vital. In order to address these issues, alveoli that possess a hollow cavity where oxygen exchange can occur are synthesized, inspired by N‐doped carbon materials with a high surface area and low transport resistance. By incorporating a dopamine coating on zeolitic imidazolate framework (ZIF), pore size is modified and electrical conducting pathways are constructed, resulting in changes to the reaction kinetics. These highly interconnected electron connection channels and proper pore sizes facilitate the diffusion of reactants and the conduction of electrons, leading to high activity of the oxygen reduction reaction (ORR), which is comparable to Pt, and high rate performance in supercapacitors.  相似文献   

8.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

9.
Printing is regarded as a revolutionary and feasible technique to guide the fabrication of versatile functional systems with designed architectures. 2D MXenes are nowadays attractive in printed energy storage devices. However, owing to the van der Waals interaction between the MXene layers, the restacking issues within the printed electrodes can significantly impede the ion/electrolyte transport and hence handicap the electrochemical performances. Herein, a melamine formaldehyde templating method is demonstrated to develop crumpled nitrogen‐doped MXene (MXene‐N) nanosheets. The nitrogen doping boosts the electrochemical performances of MXene via enhanced conductivity and redox activity. Accordingly, two types of MXene‐N inks are prepared throughout the optimization of the ink viscosity to fit the 2D screen printing and 3D extrusion printing, respectively. As a result, the screen printed MXene‐N microsupercapacitor delivers an areal capacitance of 70.1 mF cm?2 and outstanding mechanical robustness. Furthermore, the 3D‐printed MXene‐N based supercapacitor manifests an areal capacitance of 8.2 F cm?2 for a three‐layered electrode and readily stores a high areal energy density of 0.42 mWh cm?2. The approach to harnessing such versatile MXene‐N inks offers distinctive insights into the printed energy storage systems with high areal energy density and large scalability.  相似文献   

10.
The development of wearable electronics and sensing networks has increased the demand for wearable power modules that have steady output, high energy density, and long cycle life. Current power modules, such as batteries, suffer from low energy density due to their limited storage capacity. One solution to avoid the issue is to build a hybrid device consisting of both energy harvesting elements that continuously harvest ambient mechanical energy, and electrochemical energy storage units to store the harvested energy. Here, a hybrid energy harvesting bracelet, which combines a dual electromagnetic and triboelectric nanogenerator to harvest wrist motions, is reported. The bracelet is able to charge the RuO2‐based microsupercapacitor to 2 V with a single shake of human wrist, which allows the supercapacitor to power most electronic devices for minutes, such as a calculator, relative humidity, and temperature sensors.  相似文献   

11.
Some cations of ionic liquids (ILs) of interest for high‐energy electrochemical storage devices, such as lithium batteries and supercapacitors, have a structure similar to that of surfactants. For such, it is very important to understand if these IL cations tend to aggregate like surfactants since this would affect the ion mobility and thus the ionic conductivity. The aggregation behaviour of ILs consisting of the bis(trifluoromethanesulfonyl)imide anion and different N‐alkyl‐N‐methyl‐pyrrolidinium cations, with the alkyl chain varied from C3H7 to C8H17, was extensively studied with NMR and Raman methods, also in the presence of Li+ cations. 2H NMR spin‐lattice and spin‐spin relaxation rates were analyzed by applying the “two step” model of surfactant dynamics. Here we show that, indeed, the cations in these ILs tend to form aggregates surrounded by the anions. The effect is even more pronounced in the presence of dissolved lithium cations.  相似文献   

12.
A reversible room‐temperature aluminum–sulfur (Al‐S) battery is demonstrated with a strategically designed cathode structure and an ionic liquid electrolyte. Discharge–charge mechanism of the Al‐S battery is proposed based on a sequence of electrochemical, microscopic, and spectroscopic analyses. The electrochemical process of the Al‐S battery involves the formation of a series of polysulfides and sulfide. The high‐order polysulfides (Sx2?, x ≥ 6) are soluble in the ionic liquid electrolyte. Electrochemical transitions between S62? and the insoluble low‐order polysulfides or sulfide (Sx 2?, 1 ≤ x < 6) are reversible. A single‐wall carbon nanotube coating applied to the battery separator helps alleviate the diffusion of the polysulfide species and reduces the polarization behavior of the Al‐S batteries.  相似文献   

13.
Three‐dimensional (3D) printing, a layer‐by‐layer deposition technology, has a revolutionary role in a broad range of applications. As an emerging advanced fabrication technology, it has drawn growing interest in the field of electrochemical energy storage because of its inherent advantages including the freeform construction and controllable 3D structural prototyping. This article focuses on the topic of 3D‐printed electrochemical energy storage devices (EESDs), which bridge advanced electrochemical energy storage and future additive manufacturing. Basic 3D printing systems and material considerations are described to provide a fundamental understanding of printing technologies for the fabrication of EESDs. The performance metrics of 3D‐printed EESDs are then given and the related performance optimization strategies are discussed. Next, the recent advances of 3D‐printed EESDs, including sandwich‐type and in‐plane architectures, are summarized. Conclusions and future perspectives with some unique challenges and important directions are then discussed. It can be expected that, with the help of 3D printing technology, the development of advanced electrochemical energy storage systems will be greatly promoted.  相似文献   

14.
15.
Inspired by geogrids commonly applied in construction engineering to reinforce side slopes and retaining walls, the use of a “nano‐geogrid” to reinforce a Cux Zny Snz S (CZTS) nanowall electrode for application in electrochemical reactions is demonstrated. The CZTS nanowall electrode reinforced by the nano‐geogrid (denoted as NWD) shows not only remarkable mechanical and electrochemical stability but also considerable electrochemical performances. The NWD demonstrated as a counter electrode in a dye‐sensitized solar cell shows a power conversion efficiency of 7.44 ± 0.04%, comparable with the device using Pt as electrode, and also significantly improves device stability as compared with that afforded by an electrode comprising a CZTS nanowall without the nano‐geogrid (denoted as NOD). In addition, applying the NWD electrode as a cathode in photo‐electrochemical hydrogen evolution reactions (HERs) yields a photocurrent density of ?10 mA cm?2 at ?0.162 V (vs RHE) under AM 1.5 illumination. Moreover, when HERs are conducted under extreme conditions, the NWD electrode remains intact, whereas the NOD electrode is completely peeled off after 10 min of reaction. Therefore, the concept of using a mimetic rational nanostructure could pave the way for the possibility of improving the performance and stability of various devices.  相似文献   

16.
17.
Several strategies have been employed to improve the performance of energy storage devices through the development of new electrode materials. The construction of transition metal compound composite electrodes plays an important role in promoting the performance of energy storage devices. However, understandings of and insight into how to enhance the composites properties are rarely reported. Taking nickel‐based compounds as an example, Ni3N@Ni3S2 hybrid nanosheets are reported as a high‐performance anode material for lithium‐ion batteries that delivers higher lithium storage properties than the pristine Ni3N and Ni3S2 electrodes. This demonstrates that the phase boundaries between the Ni3N and Ni3S2 may contribute additional lithium storage, which leads to a synergistic effect via the high pseudocapacitance contribution from the outstanding conductivity of Ni3N and enhanced diffusion‐controlled capacity of Ni3S2. The use of composites prepared through sulfuration of hydrothermally annealed nickel hydroxide‐based precursor provides an enhancement of the energy storage properties. These results provide an important approach for increasing the electrochemical activity of composites by the combined effect of interfacial mismatch and pseudocapacitance, as well as understandings of the mechanism of the enhancement of the composite electrode properties.  相似文献   

18.
Transition‐metal (Fe, Co, Ni) based metal‐organic framework materials with controllable structures, large surface areas and adjustable pore sizes have attracted wide research interest for use in next‐generation electrochemical energy‐storage devices. This review introduces the synthesis of transition‐metal (Fe, Co, Ni) based metal‐organic frameworks and their derivatives with the focus on their application in supercapacitors and batteries.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号