首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The focus of this study was to investigate the effect of nutrient supplement (urea fertilizer) and microbial species augmentation (mixed culture of Aeromonas, Micrococcus, and Serratia sp.) on biodegradation of lubricating motor oil (LMO) and lead uptake by the autochthonous microorganism in LMO and lead-impacted soil were investigated. The potential inhibitory effects of lead on hydrocarbon utilization were investigated over a wide range of lead concentrations (25–200 mg/kg) owing to the complex co-contamination problem frequently encountered in most sites. Under aerobic conditions, total petroleum hydrocarbons (TPH) removal was 45.3% in the natural attenuation microcosm while a maximum of 72% and 68.2% TPH removal was obtained in biostimulation and bioaugmentation microcosms, respectively. Lead addition, as lead nitrate, to soil samples reduced the number of hydrocarbon degraders in all samples by a wide range (11–52%) depending on concentration and similarly, the metabolic activities were affected as observed in mineralization of LMO (3–60%) in soils amended with various lead concentrations. Moreover, the uptake of lead by the autochthonous microorganisms in the soil reduced with increase in the initial lead concentration. First-order kinetics described the biodegradation of LMO very well. The biodegradation rate constants were 0.015, 0.033, and 0.030 day?1 for LMO degradation in natural attenuation, biostimulation and bioaugmentation treatment microcosms, respectively. The presence of varying initial lead concentration reduced the biodegradation rate constant of LMO degradation in the biostimulation treatment microcosm. Half-life times were 46.2, 21, and 23 days for LMO degradation in natural attenuation, biostimulation and bioaugmentation treatment microcosms, respectively. The half-life time in the biostimulation treatment microcosm was increased with a range between 10.7 and 39.2 days by the presence of different initial lead concentration. The results have promising potential for effective remediation of soils co-contaminated with hydrocarbons and heavy metals.  相似文献   

2.
This work aimed at studying variations on the diversity and composition of the bacterial community of a rice paddy field floodwater, subjected to conventional management, namely by using the herbicide molinate. The promotion of the herbicide biodegradation either by the autochthonous microbiota or by a bioaugmentation process was also assessed. This study comprehended four sampling campaigns at key dates of the farming procedures (seeding, immediately and 6 days after application of the herbicide molinate, and after synthetic fertilization) and the subsequent physic-chemical and microbiological characterization (pH, DOC and molinate contents, total cells, cultivable bacteria and DGGE profiling) of the samples. Multivariate analysis of the DGGE profiles showed temporal variations in the bacterial community structure and the Shannon’s index values indicated that the bacterial diversity reached its minimum at the molinate application day. The highest bacterial diversity coincided with the periods with undetectable concentrations of the herbicide, although microcosm assays suggested that other factors than molinate may have been responsible for the decrease of the bacterial diversity. The ability of autochthonous microorganisms to degrade molinate and the influence of the herbicide on the bacterial community composition were assessed in microcosm assays using floodwater collected at the same dates. Given molinate was not degraded by autochthonous microorganisms, and considering it represents an environmental contaminant, bioaugmentation microcosms were assayed aiming the assessment of the feasibility of a bioremediation process to clean contaminated floodwater. A molinate-mineralizing culture, previously isolated, promoted molinate removal, induced alterations in the autochthonous bacterial community structure and diversity, and was undetected after 7 days of incubation, suggesting the feasibility of the process.  相似文献   

3.
Molinate is a thiocarbamate herbicide used worldwide in rice crop protection. As with other pesticides, molinate is a recognized environmental pollutant, detected in soils, irrigation water, or rivers and bio-accumulated by some wildlife forms. For this reason, and in spite of its low toxicity to humans, environmental protection measures, which include reduction of use and/or remediation processes, are recommended. Due to its physic-chemical properties, molinate can easily disperse and react in the environment, originating diverse transformation products, some with increased toxicity. In spite of being a xenobiotic compound, molinate can also suffer microbial transformation by bacteria or fungi, sometimes serving as nutrient and energy source. In an attempt to isolate microorganisms to be used in the bioremediation of molinate-contaminated sites, a mixed culture, dominated by the actinobacterium Gulosibacter molinativorax ON4T, was recovered from the runoff of a molinate-producing plant. Beyond a promising tool to decontaminate molinate-polluted sites, this culture also brought interesting insights into the biology of the degradation of this herbicide. In this review, an overview of the distribution and properties of molinate as environmental contaminant, the capability of microorganisms to transform this herbicide, and some reflections about possible bioremediation approaches are made.  相似文献   

4.
This work evaluated the effect of bioremediation treatments including natural attenuation, bioaugmentation, biostimulation as well as combined biostimulation and bioaugmentation on degradation of 4-nitrotoluene (4-NT), 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) in soil microcosms. Bioaugmentation with a previously isolated NTs-degrading bacterium, Rhodococcus pyridinivorans NT2, showed an 86–88% decrease in 4-NT, 2,4-DNT or 2,6-DNT after 60 days. Irrespective of the substrate types, least degradation (6–6.5%) was observed in abiotic control. The addition of β-cyclodextrin or rhamnolipid significantly improved NTs degradation efficiency in soil (18.5–74%) than natural attenuation (22–25%). Exogenous addition of preselected bacterial isolate NT2 along with β-cyclodextrin/rhamnolipid resulted in the greatest number (1.8× and 2.5× high) of total heterotrophic aerobic bacteria and NT degraders, respectively, compared to natural attenuation. Irrespective of the treatment types, the population of NT degraders increased steadily in the first 5 weeks of incubation followed by a plateau within the next few weeks. The treatment BABS2 (Soil + rhamnolipid + NT2) yielded highest microbial-C and -N and dehydrogenase activity, consistent with results of NTs degradation and microbial counts in combined bioaugmentation and biostimulation. Thus the results of this study suggest that bioaugmentation by R. pyridinivorans NT2 may be a promising bioremediation strategy for nitroaromatics-contaminated soils.  相似文献   

5.
ABSTRACT

The bioremediation of petroleum hydrocarbons (PHCs)-polluted soils was studied by an ex-situ, lab-scale, biopile experiment with different parameters: aeration rate (1 h day?1 and 2 h day?1), soil moisture (44% and 60%), and microorganisms consortia addition (320 and 640 mL). The trial was conducted using eight treatment cells, each having different parameters, and one control cell for 18 weeks on soil containing 7600 ± 400 mg kg?1 total PHCs, taken from a former petroleum product warehouse in Sfantu Gheorghe, Covasna County (Romania). The microorganisms used for bioremediation were isolated from the native microflora of the polluted soil and grown in laboratory on culture media. A bioremediation yield up to 76% was obtained in the test cells, while in the control cell the reduction of PHCs content by 16% was attributed to natural attenuation. The results indicated that by addition of microorganisms the bioremediation is much more effective than natural attenuation. The results also revealed an accentuated decrease in PHC concentrations after 4 weeks of treatment, irrespective of the treatment conditions.  相似文献   

6.
7.
ABSTRACT?The co-metabolism of benzo[a]pyrene (B[a]P) and the capacity of the fungus Trichoderma reesei FS10-C to bioremediate an aged polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated. The fungal isolate removed about 54% of B[a]P (20 mg L?1) after 12 days of incubation with glucose (10 g L?1) supplementation as a co-metabolic substrate. Bioaugmented microcosms showed a 25% decrease in total PAH concentrations in soil after 28 days, and the degradation percentages of 3-, 4-, and 5(+6)-ring PAHs were 36%, 35%, and 25%, respectively. In addition, bioaugmented microcosms exhibited higher dehydrogenase (DHA) and fluorescein diacetate hydrolysis (FDAH) activities and increased average well-color development (AWCD), Shannon-Weaver index (H), and Simpson index (D) significantly. Principal component analysis (PCA) also distinguished clear differentiation between treatments, indicating that bioaugmentation restored the microbiological function of the PAH-contaminated soil. The results suggest that bioaugmentation by T. reesei FS10-C might be a promising bioremediation strategy for aged PAH-contaminated soils.  相似文献   

8.
A 70 day pot experiment was conducted for the cleaning-up of a PCBs-contaminated soil (104 mg kg?1 soil DW) using bioaugmentation with Burkholderia xenovorans LB400 (LB400) assisted or not by the use of tall fescue (Festuca arundinacea). The total cultivable bacteria of the soil were higher with the presence of plants. Real-time PCR showed that LB400 (targeting 16S–23S rRNA ITS) survived with abundance related to total bacteria (targeting 16S rRNA) being higher with fescue (up to a factor of three). Bioaugmentation had a positive effect on fescue biomass and more specifically on roots (by a factor of three). PCB dissipation (sum of congeners 28, 52, 101, 118, 153, 180) averaged 13 % (bioaugmented-planted) up to 32 % (non bioaugmented-planted), without any significant difference between treatments. Basically our results demonstrated that indigenous bacteria were able to dissipate PCBs (26.2 % dissipation). PCB dissipation was not related to the abundance of LB400 or to the total bacterial counts. Bioaugmentation or fescue altered the structure of the bacterial community of the soil, not the combination of both. Principal component analysis showed that bioaugmentation tended to improve the control of the process (lower variability in PCB dissipation). Opposite to that bioaugmentation increased the variability of the structure of the bacterial community.  相似文献   

9.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

10.
In this study, the efficacy of bioremediation strategies (enhanced natural attenuation with nitrate and phosphate addition [ENA] and bioaugmentation) for the remediation of creosote-contaminated soil (7767 ± 1286 mg kg?1 of the 16 EPA priority PAHs) was investigated at pilot scale. Bioaugmentation of creosote-contaminated soil with freshly grown or freeze dried Mycobacterium sp. strain 1B (a PAH degrading microorganism) was applied following bench scale studies that indicated that the indigenous soil microflora had a limited PAH metabolic activity. After 182 days, the total PAH concentration in creosote-contaminated soil was reduced from 7767 ± 1286 mg kg?1 to 5579 ± 321 mg kg?1, 2250 ± 71 mg kg?1, 2050 ± 354 mg kg?1 and 1950 ± 70 mg kg?1 in natural attenuation (no additions) and ENA biopiles and biopiles augmented with freshly grown or freeze dried Mycobacterium sp. strain 1B respectively. In ENA and bioaugmentation biopiles, between 82% and 99% of three-ring compounds (acenaphthene, anthracene, fluorene, phenanthrene) were removed while four-ring PAH removal ranged from 33 to 81%. However, the extent of PAH degradation did not vary significantly between the ENA treatment and biopiles augmented with Mycobacterium sp. strain 1B. Four-ring PAH removal followed the order fluoranthene > pyrene > benz[a]anthracene > chrysene. The high residual concentration of some four-ring PAHs may be attributable to bioavailability issues rather than a lack of microbial catabolic activity. Comparable results between ENA and bioaugmentation at pilot scale were surprising given the limited degradative capacity of the microbial consortia enriched from the creosote-contaminated soil.  相似文献   

11.
Soil and groundwater contaminated by munitions compounds is a crucial issue in environmental protection. Trinitrotoluene (TNT) is highly toxic and carcinogenic; therefore, the control and remediation of TNT contamination is a critical environmental issue. In this study, the authors characterized the indigenous microbial isolates from a TNT-contaminated site and evaluated their activity in TNT biodegradation. The bacteria Achromobacter sp. BC09 and Citrobacter sp. YC4 isolated from TNT-contaminated soil by enrichment culture with TNT as the sole carbon and nitrogen source (strain BC09) and as the sole nitrogen but not carbon source (strain YC4) were studied for their use in TNT bioremediation. The efficacy of degradation of TNT by indigenous microorganisms in contaminated soil without any modification was insufficient in the laboratory-scale pilot experiments. The addition of strains BC09 and YC4 to the contaminated soil did not significantly accelerate the degradation rate. However, the addition of an additional carbon source (e.g., 0.25% sucrose) could significantly increase the bioremediation efficiency (ca. decrease of 200 ppm for 10 days). Overall, the results suggested that biostimulation was more efficient as compared with bioaugmentation. Nevertheless, the combination of biostimulation and bioaugmentation using these indigenous isolates is still a feasible approach for the development of bioremediation of TNT pollution.  相似文献   

12.
Microcosm studies investigated the effects of bioaugmentation with a mixed Dehalococcoides (Dhc)/Dehalobacter (Dhb) culture on biological enhanced reductive dechlorination for treatment of 1,1,1-trichloroethane (TCA) and chloroethenes in groundwater at three Danish sites. Microcosms were amended with lactate as electron donor and monitored over 600 days. Experimental variables included bioaugmentation, TCA concentration, and presence/absence of chloroethenes. Bioaugmented microcosms received a mixture of the Dhc culture KB-1 and Dhb culture ACT-3. To investigate effects of substrate concentration, microcosms were amended with various concentrations of chloroethanes (TCA or monochloroethane [CA]) and/or chloroethenes (tetrachloroethene [PCE], trichloroethene [TCE], or 1,1-dichloroethene [1,1-DCE]). Results showed that combined electron donor addition and bioaugmentation stimulated dechlorination of TCA and 1,1-dichloroethane (1,1-DCA) to CA, and dechlorination of PCE, TCE, 1,1-DCE and cDCE to ethane. Dechlorination of CA was not observed. Bioaugmentation improved the rate and extent of TCA and 1,1-DCA dechlorination at two sites, but did not accelerate dechlorination at a third site where geochemical conditions were reducing and Dhc and Dhb were indigenous. TCA at initial concentrations of 5 mg/L inhibited (i.e., slowed the rate of) TCA dechlorination, TCE dechlorination, donor fermentation, and methanogenesis. 1 mg/L TCA did not inhibit dechlorination of TCA, TCE or cDCE. Moreover, complete dechlorination of PCE to ethene was observed in the presence of 3.2 mg/L TCA. In contrast to some prior reports, these studies indicate that low part-per million levels of TCA (<3 mg/L) in aquifer systems do not inhibit dechlorination of PCE or TCE to ethene. In addition, the results show that co-bioaugmentation with Dhc and Dhb cultures can be an effective strategy for accelerating treatment of chloroethane/chloroethene mixtures in groundwater, with the exception that all currently known Dhc and Dhb cultures cannot treat CA.  相似文献   

13.
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1–2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.  相似文献   

14.
Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH’s naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH’s pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO2 evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.  相似文献   

15.
Gene bioaugmentation is a bioremediation strategy that enhances biodegradative potential via dissemination of degradative genes from introduced microorganisms to indigenous microorganisms. Bioremediation experiments using 2,4-dichlorophenoxyacetic acid (2,4-D)-contaminated soil slurry and strains of Pseudomonas putida or Escherichia coli harboring a self-transmissible 2,4-D degradative plasmid pJP4 were conducted in microcosms to assess possible effects of gene bioaugmentation on the overall microbial community structure and ecological functions (carbon source utilization and nitrogen transformation potentials). Although exogenous bacteria decreased rapidly, 2,4-D degradation was stimulated in bioaugmented microcosms, possibly because of the occurrence of transconjugants by the transfer of pJP4. Terminal restriction fragment length polymorphism analysis revealed that, although the bacterial community structure was disturbed immediately after introducing exogenous bacteria to the inoculated microcosms, it gradually approached that of the uninoculated microcosms. Biolog assay, nitrate reduction assay, and monitoring of the amoA gene of ammonia-oxidizing bacteria and nirK and nirS genes of denitrifying bacteria showed no irretrievable depressive effects of gene bioaugmentation on the carbon source utilization and nitrogen transformation potentials. These results may suggest that gene bioaugmentation with P. putida and E. coli strains harboring pJP4 is effective for the degradation of 2,4-D in soil without large impacts on the indigenous microbial community.  相似文献   

16.
This paper investigates effects of combining thermal and biological remediation, based on laboratory studies of trichloroethene (TCE) degradation. Aquifer material was collected 6 months after terminating a full-scale Electrical Resistance Heating (ERH), when the site had cooled from approximately 100°C to 40°C. The aquifer material was used to construct bioaugmented microcosms amended with the mixed anaerobic dechlorinating culture, KB-1TM, and an electron donor (5 mM lactate). Microcosms were bioaugmented during cooling at 40, 30, 20, and 10°C, as temperatures continually decreased during laboratory incubation. Redox conditions were generally methanogenic, and electron donors were present to support dechlorination. For microcosms bioaugmented at 10°C and 20°C, dechlorination stalled at cis-dichloroethene (cDCE) and vinyl chloride (VC) 150 days after bioaugmentation. However, within 300 days of incubation ethene was produced in the majority of these microcosms. In contrast, dechlorination was rapid and complete in microcosms bioaugmented at 30°C. Microcosms bioaugmented at 40°C also showed rapid dechlorination, but stalled at cDCE with partial VC and ethene production, even after 150 days of incubation when the temperature had decreased to 10°C. These results suggest that sequential bioremediation of TCE is possible in field-scale thermal treatments after donor addition and bioaugmentation and that the optimal bioaugmentation temperature is approximately 30°C. When biological and thermal remediations are to be applied at the same location, three bioremediation approaches could be considered: (a) treating TCE in perimeter areas outside the source zone at temperatures of approximately 30°C; (b) polishing TCE concentrations in the original source zone during cooling from approximately 30°C to ambient groundwater temperatures; and (c) using bioremediation in downgradient areas taking advantages of the higher temperature and potential release of organic matter.  相似文献   

17.
《Microbiological research》2014,169(12):881-887
The recently isolated fungal strain Phomopsis liquidambari B3 can degrade high concentrations of indole, indicating its potential for the bioremediation of indole-contaminated soil. In this study, a specific real-time PCR was developed to detect the survival of P. liquidambari B3 in soil. Subsequently, degradation activity of strain B3 and its effects on indigenous microbial community were analyzed. Results showed the amount of P. liquidambari B3 genomic DNA increased to a maximum 5.67 log (pg g−1 dry soil) 10 days after inoculation of 5.04 log (pg g−1 dry soil), and then gradually decreased with time and after 40 days it was below the detection limit. By the end of the experiment (day 40), bioaugmented microsoms showed a 93.7% decrease in indole, while the values for biostimulated and control microcosms were much lower. Higher microbial biomass and enzyme activities were observed in bioaugmented soil. Denaturing gradient gel electrophoresis analysis showed bioaugmentation increased richness of resident microbial community. These results indicate that P. liquidambari B3 is effective for the remediation of indole-contaminated soil and also provides valuable information about the behavior of the inoculant population during bioremediation, which could be directly used in the risk assessment of inoculant population and optimization of bioremediation process.  相似文献   

18.
Bacterial strains of the genus Sphingomonas are often isolated from contaminated soils for their ability to use polycyclic aromatic hydrocarbons (PAH) as the sole source of carbon and energy. The direct detection of Sphingomonas strains in contaminated soils, either indigenous or inoculated, is, as such, of interest for bioremediation purposes. In this study, a culture-independent PCR-based detection method using specific primers targeting the Sphingomonas 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) was developed to assess Sphingomonas diversity in PAH-contaminated soils. PCR using the new primer pair on a set of template DNAs of different bacterial genera showed that the method was selective for bacteria belonging to the family Sphingomonadaceae. Single-band DGGE profiles were obtained for most Sphingomonas strains tested. Strains belonging to the same species had identical DGGE fingerprints, and in most cases, these fingerprints were typical for one species. Inoculated strains could be detected at a cell concentration of 104 CFU g of soil−1. The analysis of Sphingomonas population structures of several PAH-contaminated soils by the new PCR-DGGE method revealed that soils containing the highest phenanthrene concentrations showed the lowest Sphingomonas diversity. Sequence analysis of cloned PCR products amplified from soil DNA revealed new 16S rRNA gene Sphingomonas sequences significantly different from sequences from known cultivated isolates (i.e., sequences from environmental clones grouped phylogenetically with other environmental clone sequences available on the web and that possibly originated from several potential new species). In conclusion, the newly designed Sphingomonas-specific PCR-DGGE detection technique successfully analyzed the Sphingomonas communities from polluted soils at the species level and revealed different Sphingomonas members not previously detected by culture-dependent detection techniques.  相似文献   

19.
Introduced degraders often do not survive when applied to polluted sites; however, the potential for successful bioaugmentation may be increased if newly activated soil (containing indigenous degrader populations recently exposed to the contaminant) or potentially active soil (containing indigenous degrader populations not previously exposed to the contaminant) is used as the inoculant. To investigate this concept, Madera and Oversite soils were amended with 0 or 500 micrograms of 2-, 3-, or 4-chlorobenzoate per gram soil. The Madera degraded 2-chlorobenzoate while the Oversite degraded 3- and 4-chlorobenzoate. After 22 days of incubation, non-active soils that had not degraded chlorobenzoate were bioaugmented with the appropriate activated soil that had been exposed to and degraded chlorobenzoate. Thus, Oversite soil that had not degraded 2-chlorobenzoate was bioaugmented with Madera soil that had degraded 2-chlorobenzoate. Likewise, Madera soil that had not degraded 3- or 4-chlorobenzoate was bioaugmented with the Oversite soil that had degraded 3- or 4-chlorobenzoate. Additionally, the non-active soils were bioaugmented with the corresponding potentially active soils. The Oversite soil amended with activated Madera soil degraded the 2-chlorobenzoate within 3 days of bioaugmentation. The Madera soil amended with activated Oversite soils degraded the 3- and 4-chlorobenzoate within 20 and 6 days, respectively. Large degrader populations developed in microcosms bioaugmented with activated soil, and shifts in the 3- and 4-CB degrader community structures occurred following bioaugmentation. In contrast, bioaugmentation with potentially active soil did not impact degradation. The results indicate the potential for bioaugmentation with newly activated soil to enhance contaminant degradation.  相似文献   

20.
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (105 CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (105 CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号