首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellites consisting of AT repeats are highly polymorphic in rice genomes and can be used to distinguish between even closely related japonica cultivars in Japan. Polymorphisms of 20 microsatellite loci were determined using 59 japonica cultivars, including both domestic and modern Japanese cultivars. Although the polymorphisms of these 20 microsatellite loci indicated that the Japanese cultivars were genetically quite similar, microsatellites consisting of AT repeats showed high gene diversity even among such closely related cultivars. Combinations of these hypervariable microsatellites can be employed to classify individual cultivars, since the microsatellites were stable within each cultivar. An identification system based on these highly polymorphic microsatellites could be used to maintain the purity of rice seeds by eliminating contamination. A parentage diagnosis using 17 polymorphic microsatellite loci clearly demonstrated that plants which carried desired chromosome regions had been selected in breeding programs. Thus, these hypervariable microsatellites consisting of AT repeats should promote the selection of plants which carry desired chromosomes from genetically similar parents. Backcrossing could also help to eliminate unnecessary chromosome regions with microsatellite polymorphisms at an early stage in breeding programs. Received: 8 July 1996 / Accepted: 12 July 1996  相似文献   

2.
We studied microsatellite frequency and distribution in 21.76-Mb random genomic sequences, 0.67-Mb BAC sequences from the Z chromosome, and 6.3-Mb EST sequences of Bombyx mori. We mined microsatellites of >/=15 bases of mononucleotide repeats and >/=5 repeat units of other classes of repeats. We estimated that microsatellites account for 0.31% of the genome of B. mori. Microsatellite tracts of A, AT, and ATT were the most abundant whereas their number drastically decreased as the length of the repeat motif increased. In general, tri- and hexanucleotide repeats were overrepresented in the transcribed sequences except TAA, GTA, and TGA, which were in excess in genomic sequences. The Z chromosome sequences contained shorter repeat types than the rest of the chromosomes in addition to a higher abundance of AT-rich repeats. Our results showed that base composition of the flanking sequence has an influence on the origin and evolution of microsatellites. Transitions/transversions were high in microsatellites of ESTs, whereas the genomic sequence had an equal number of substitutions and indels. The average heterozygosity value for 23 polymorphic microsatellite loci surveyed in 13 diverse silkmoth strains having 2-14 alleles was 0.54. Only 36 (18.2%) of 198 microsatellite loci were polymorphic between the two divergent silkworm populations and 10 (5%) loci revealed null alleles. The microsatellite map generated using these polymorphic markers resulted in 8 linkage groups. B. mori microsatellite loci were the most conserved in its immediate ancestor, B. mandarina, followed by the wild saturniid silkmoth, Antheraea assama.  相似文献   

3.
Microsatellites, a special class of repetitive DNA, have become one of the most popular genetic markers. The progress of various genome projects has made it possible to study the genomic distribution of microsatellites and to evaluate the potential influence of several parameters on their genesis. We report the distribution of dinucleotide microsatellites in the genome of Drosophila melanogaster. When considering only microsatellites with five or more repeat units, the average length of dinucleotide repeats in D. melanogaster is 6.7 repeats. We tested a wide range of parameters which could potentially influence microsatellite density, and we did not detect a significant influence of recombination rate, number of exons, or total length of coding sequence. In concordance with the neutral expectation for the origin of microsatellites, a significant positive correlation between AT content and (AT/TA)n microsatellite density was detected. While this pattern may indicate that microsatellite genesis is a random process, we also found evidence for a nonrandom distribution of microsatellites. Average microsatellite density was higher on the X chromosome, but extreme heterogeneity was observed between different genomic regions. Such a clumping of microsatellites was also evident on a more local scale, as 38.9% of the contiguous sequences analyzed showed a deviation from a random distribution of microsatellites.  相似文献   

4.
Y chromosome haplotyping based on microsatellites and single nucleotide polymorphisms (SNPs) has proved to be a powerful tool for population genetic studies of humans. However, the promise of the approach is hampered in the majority of nonhuman mammals by the lack of Y-specific polymorphic markers. We were able to identify new male-specific polymorphisms in the domestic cat Felis catus and 6 additional Felidae species with a combination of molecular genetic and cytogenetic approaches including 1) identifying domestic cat male-specific microsatellites from markers generated from a male cat microsatellite-enriched genomic library, a flow-sorted Y cosmid library, or a Y-specific cat bacteria artificial chromosome (BAC) clone, (2) constructing microsatellite-enriched libraries from flow-sorted Y chromosomes isolated directly from focal wildcat species, and (3) screening Y chromosome conserved anchored tagged sequences primers in Felidae species. Forty-one male-specific microsatellites were identified, but only 6 were single-copy loci, consistent with the repetitive nature of the Y chromosome. Nucleotide diversity (pi) of Y-linked intron sequences (2.1 kbp) was in the range of 0 (tiger) to 9.95 x 10(-4) (marbled cat), and the number of SNPs ranged from none in the tiger to 7 in the Asian leopard cat. The Y haplotyping system described here, consisting of 4 introns (SMCY3, SMCY7, UTY11, and DBY7) and 1 polymorphic microsatellite (SMCY-STR), represents the first available markers for tracking intraspecific male lineage polymorphisms in Felidae species and promises to provide significant insights to evolutionary and population genetic studies of the species.  相似文献   

5.
The prediction that selection affects the genome in a locus-specific way also affecting flanking neutral variation, known as genetic hitchhiking, enables the use of polymorphic markers in noncoding regions to detect the footprints of selection. However, as the strength of the selective footprint on a locus depends on the distance from the selected site and will decay with time due to recombination, the utilization of polymorphic markers closely linked to coding regions of the genome should increase the probability of detecting the footprints of selection as more gene-containing regions are covered. The occurrence of highly polymorphic microsatellites in the untranslated regions of expressed sequence tags (ESTs) is a potentially useful source of gene-associated polymorphisms which has thus far not been utilized for genome screens in natural populations. In this study, we searched for the genetic signatures of divergent selection by screening 95 genomic and EST-derived mini- and microsatellites in eight natural Atlantic salmon, Salmo salar L., populations from different spatial scales inhabiting contrasting natural environments (salt-, brackish, and freshwater habitat). Altogether, we identified nine EST-associated microsatellites, which exhibited highly significant deviations from the neutral expectations using different statistical methods at various spatial scales and showed similar trends in separate population samples from different environments (salt-, brackish, and freshwater habitats) and sea areas (Barents vs. White Sea). We consider these ESTs as the best candidate loci affected by divergent selection, and hence, they serve as promising genes associated with adaptive divergence in Atlantic salmon. Our results demonstrate that EST-linked microsatellite genome scans provide an efficient strategy for discovering functional polymorphisms, especially in nonmodel organisms.  相似文献   

6.
The human genome contains approximately 50,000 copies of an interspersed repeat with the sequence (dT-dG)n, where n = approximately 10-60. In humans, (TG)n repeats have been found in several sequenced regions. Since minisatellite regions with larger repeat elements often display extensive length polymorphisms, we suspected that (TG)n repeats ("microsatellites") might also be polymorphic. Using the polymerase chain reaction to amplify a (TG)n microsatellite in the human cardiac actin gene, we detected 12 different allelic fragments in 37 unrelated individuals, 32 of whom were heterozygous. Codominant Mendelian inheritance of fragments was observed in three families with a total of 24 children. Because of the widespread distribution of (TG)n microsatellites, polymorphisms of this type may be generally abundant and present in regions where minisatellites are rare, making such microsatellite loci very useful for linkage studies in humans.  相似文献   

7.
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non‐model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation‐by‐distance was observed across scales from a few hundred metres to approximately 200 km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short‐ and long‐term natural processes, as well as anthropogenic influence. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 251–262.  相似文献   

8.
Single nucleotide polymorphisms or SNPs are the most abundant form of genetic variation in the genome of plants and animals. Microsatellites are hypervariable regions of genome, while their flanking regions are assumed to be as conserved as the average of the genome. In the present study, flanking sequences of 10 microsatellite loci were compared in different cultivars of Vitis to determine the existing polymorphism. For every microsatellite, about 8 homozygous cultivars (regarding the microsatellite genotype) were chosen for sequencing. A total of 45 different varieties of Vitis and 91 sequences were analysed. Sequence polymorphisms were detected for all the microsatellite flanking regions studied, including single nucleotide polymorphisms (SNPs), insertions and deletions. The number of identified changes varied considerably among the loci with a frequency of one polymorphism every 41 nucleotides, being VVMD5 the most polymorphic one. A number of SNPs were used to design SNP markers, which were scored by dideoxy single base primer extension and capillary electrophoresis methodology. These SNP markers were employed to genotype 21 cultivars of Vitis vinifera and 4 varieties of other Vitis species. The utility of the markers developed as well as their utility for varietal identification and pedigree studies is discussed, using a similar study carried out with the 10 microsatellites as a reference.  相似文献   

9.
In order to determine how informative a set of microsatellites from tomato is across the genus Lycopersicon, 17 microsatellite loci, derived from regions in and around genes, were tested on 31 accessions comprising the nine species of the genus. The microsatellite polymorphisms were used to estimate the distribution of diversity throughout the genus and to evaluate the efficacy of microsatellites for establishing species relationships in comparison with existing phylogeny reconstructions. Gene diversity and genetic distances were calculated. A high level of polymorphism was found, as well as a large number of alleles unique for species. The level of polymorphism detected with the microsatellite loci within and among species was highly correlated with the respective mating systems, cross-pollinating species having a significantly higher gene diversity compared to self-pollinating species. In general, microsatellite-based trees were consistent with a published RFLP-based dendrogram as well as with a published classification based on morphology and the mating system. A tree constructed with low-polymorphic loci (gene diversity <0.245) was shown to represent a more-reliable topology than a tree constructed with more-highly polymorphic loci. Received: 19 February 2001 / Accepted: 26 March 2001  相似文献   

10.
Random-amplified polymorphic DNA (RAPD) and microsatellite markers were developed and used for the analysis of genetic variability in the critically endangered yellow catfish Horabagrus nigricollaris, sampled from the Chalakkudy River, Kerala, India. Eight RAPD and five microsatellite markers were detected to genotype the species. In RAPD, the 73 fragments were 20.55% polymorphic, whereas 4 polymorphic loci (80%) were obtained in microsatellites. In microsatellites, the number of alleles across the 5 loci was 1-5, and the range of heterozygosity was 0.25-0.5. The mean observed number of alleles was 2.4, and the effective number was 1.775 per locus. The average heterozygosity across all investigated samples was 0.29, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods report a low degree of gene diversity and lack of genetic heterogeneity in the population of H. nigricollaris, emphasizing the need for fishery management, conservation, and rehabilitation of this species.  相似文献   

11.
邵伟伟  乔芬  蔡玮  林植华  韦力 《兽类学报》2023,43(2):182-192
脊椎动物基因组含有丰富的微卫星信息。本研究对翼手目动物中的大蹄蝠全基因组及其基因的微卫星分布特征进行分析,并对含有微卫星编码序列的基因进行注释分析。结果表明,大蹄蝠全基因组大小为2.24 Gb,共含有497 883个微卫星,其中,数量和比例最多的是单碱基和二碱基重复类型,分别有173 953个(34.94%)和222 591个(44.71%),相对丰度分别为77.78 loci/Mb和99.52 loci/Mb。微卫星数量从单碱基重复到六碱基重复单元最多的类型分别为(A)n、(AC)n、(TAT)n、(TTTA)n、(AACAA)n和(TATCTA)n,比例分别为95.14%、55.25%、38.41%、22.17%、48.68%和20.30%。不同基因区和基因间区的数量及丰度不同,其中基因间区的微卫星数量及其丰度最大,分别为322 666个和2 541.57 loci/Mb,编码区的微卫星数量及其丰度最小,分别为1 461个和461.98 loci/Mb。基因间区和全基因组的微卫星的分布特征相似。编码区最多的微卫星类型为三碱基重复单元,外显子最多的微卫星类型为单碱基、二碱基和三碱基重...  相似文献   

12.
Single nucleotide polymorphisms (SNPs) have the potential to become the genetic marker of choice in studies of the ecology and conservation of natural populations because of their capacity to access variability across the genome. In this study, we provide one of the first demonstrations of SNP discovery in a wild population in order to address typical issues of importance in ecology and conservation in the recolonized Scandinavian and neighbouring Finnish wolf Canis lupus populations. Using end sequence from BAC (bacterial artificial chromosome) clones specific for dogs, we designed assays for 24 SNP loci, 20 sites of which had previously been shown to be polymorphic in domestic dogs and four sites were newly identified as polymorphic in wolves. Of the 24 assayed loci, 22 SNPs were found to be variable within the Scandinavian population and, importantly, these were able to distinguish individual wolves from one another (unbiased probability of identity of 4.33 x 10(-8)), providing equivalent results to that derived from 12 variable microsatellites genotyped in the same population. An assignment test shows differentiation between the Scandinavian and neighbouring Finnish wolf populations, although not all known immigrants are accurately identified. An exploration of the misclassification rates in the identification of relationships shows that neither 22 SNP nor 20 microsatellite loci are able to discriminate across single order relationships. Despite the remaining obstacle of SNP discovery in nonmodel organisms, the use of SNPs in ecological and conservation studies is encouraged by the advent of large scale screening methods. Furthermore, the ability to amplify extremely small fragments makes SNPs of particular use for population monitoring, where faecal and other noninvasive samples are routinely used.  相似文献   

13.
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.  相似文献   

14.
Wang S  Huang S  Liu N  Chen L  Oh C  Zhao H 《BMC genetics》2005,6(Z1):S28
There is currently a great interest in using single-nucleotide polymorphisms (SNPs) in genetic linkage and association studies because of the abundance of SNPs as well as the availability of high-throughput genotyping technologies. In this study, we compared the performance of whole-genome scans using SNPs with microsatellites on 143 pedigrees from the Collaborative Studies on Genetics of Alcoholism provided by Genetic Analysis Workshop 14. A total of 315 microsatellites and 10,081 SNPs from Affymetrix on 22 autosomal chromosomes were used in our analyses. We found that the results from the two scans had good overall concordance. One region on chromosome 2 and two regions on chromosome 7 showed significant linkage signals (i.e., NPL >or= 2) for alcoholism from both the SNP and microsatellite scans. The different results observed between the two scans may be explained by the difference observed in information content between the SNPs and the microsatellites.  相似文献   

15.
Molecular stock improvement techniques such as marker assisted selection have great potential in accelerating selective breeding programmes for animal production industries. However, the discovery and application of trait/marker associations usually requires a large number of genome-wide polymorphic loci. Here, we present 2322 unique microsatellites for the silver-lipped pearl oyster, Pinctada maxima, a species of aquaculture importance throughout the Indo-Australian Archipelago for production of the highly valued South Sea pearl. More than 1.2 million Roche 454 expressed sequence tag (EST) reads were screened for microsatellite repeat motifs. A total of 12,604 sequences contained either a di, tri, tetra, penta or hexa microsatellite repeat motif (n ≥ 6), with 6435 of these sequences having sufficient flanking regions for primer development. All identified microsatellites with designed primers were condensed into 2322 unique clusters (i.e., unique loci) of which 360 were shown to be polymorphic based on multiple sequence reads with different repeat motifs. Genotyping of five microsatellite loci demonstrated that in silico evaluation of polymorphism levels was a very useful method for identification of polymorphic loci, with the variation uncovered being a lower bound. Gene Ontology annotations of sequences containing microsatellites suggest that most are derived from a diverse array of unique genes. This EST derived microsatellite database will be a valuable resource for future studies in genetic map construction, diversity analysis, quantitative trait loci analysis, association mapping and marker assisted selection, not only for P. maxima, but also closely related species within the genus Pinctada.  相似文献   

16.
Using repeats found in sequences from Dianthus species present in the EMBL database, primers for STMS (sequence-tagged microsatellite site) analysis were developed and tested. Five loci were polymorphic and amplified products of sufficient quality in nearly all of the 26 Dianthus species tested, except MS-DINGSTA, which amplified in only one-third of the species. Loci MS-DINMADSBOX and MS-DCDIA30 produced allele series that were mostly two nucleotides (the repeat unit) apart. MS-DCAMCRBSY and MS-DINCARACC also amplified regular series of alleles, but more than two fragments per individual were detected in a number of species. Both loci code for a member of the ACC synthase gene family. The observation that the loci amplified across a wide range of Dianthus species may imply that the different species within the genus are relatively closely related. Alternatively, it may indicate that the regions selected for primer design (some of which are in coding regions) are well conserved. These microsatellites will be useful for the measurement of genetic diversity in natural populations of Dianthus species and the identification of carnation varieties.  相似文献   

17.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 × G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.  相似文献   

18.
We characterized nine microsatellite loci and identified an additional 60 genomic regions containing microsatellites in the red hind grouper, Epinephelus guttatus. The nine loci were highly polymorphic, and primers designed from red hind genomic DNA produced a strong amplification product in a test panel of 16 other groupers in the genera Epinephelus and Mycteroperca collected from across the world. Most of the amplified regions were homologous to the red hind locus and a well‐defined microsatellite repeat was generally evident. The nine loci, together with the 60 uncharacterized microsatellite‐containing regions, provide a powerful tool for ecological and evolutionary studies in groupers.  相似文献   

19.
Microsatellite markers and chromosomal inversion polymorphisms are useful genetic markers for determining population structure in Anopheline mosquitoes. In Anopheles funestus (2N = 6), only chromosome arms 2R, 3R, and 3L are known to carry polymorphic inversions. The physical location of microsatellite markers with respect to polymorphic inversions is potentially important information for interpreting population genetic structure, yet none of the available marker sets have been physically mapped in this species. Accordingly, we mapped 32 polymorphic A. funestus microsatellite markers to the polytene chromosomes using fluorescent in situ hybridization (FISH) and identified 16 markers outside of known polymorphic inversions. Here we provide an integrated polytene chromosome map for A. funestus that includes the breakpoints of all known polymorphic inversions as well as the physical locations of microsatellite loci developed to date. Based on this map, we suggest a standard set of 16 polymorphic microsatellite markers that are distributed evenly across the chromosome complement, occur predominantly outside of inversions, and amplify reliably. Adoption of this set by researchers working in different regions of Africa will facilitate metapopulation analyses of this primary malaria vector.  相似文献   

20.
The ability to assess genetic variation is critical for determining genetic diversity and population structure. In corals, slow evolutionary rates in mitochondrial genomes have left allozymes as the only markers presently available to investigate patterns of intraspecific genetic variation. Characteristics of microsatellites render them more informative than allozymes for such analyses; however, few coral microsatellites are available. This study describes polymorphic microsatellite loci isolated from two scleractinian coral species. Most loci exhibit significant heterozygote deficiencies, likely due to nonrandom mating or Wahlund effects. These markers are being used to investigate gene flow among populations, providing insight into reef connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号