首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
A 6.3 kb fragment of E.coli RFL57 DNA coding for the type IV restriction-modification system Eco57I was cloned and expressed in E.coli RR1. A 5775 bp region of the cloned fragment was sequenced which contains three open reading frames (ORF). The methylase gene is 1623 bp long, corresponding to a protein of 543 amino acids (62 kDa); the endonuclease gene is 2991 bp in length (997 amino acids, 117 kDa). The two genes are transcribed convergently from different strands with their 3'-ends separated by 69 bp. The third short open reading frame (186 bp, 62 amino acids) has been identified, that precedes and overlaps by 7 nucleotides the ORF encoding the methylase. Comparison of the deduced Eco57I endonuclease and methylase amino acid sequences revealed three regions of significant similarity. Two of them resemble the conserved sequence motifs characteristic of the DNA[adenine-N6] methylases. The third one shares similarity with corresponding regions of the PaeR7I, TaqI, CviBIII, PstI, BamHI and HincII methylases. Homologs of this sequence are also found within the sequences of the PaeR7I, PstI and BamHI restriction endonucleases. This is the first example of a family of cognate restriction endonucleases and methylases sharing homologous regions. Analysis of the structural relationship suggests that the type IV enzymes represent an intermediate in the evolutionary pathway between the type III and type II enzymes.  相似文献   

2.
3.
The complete type II restriction-modification system of Salmonella infantis was cloned in Escherichia coli as an R . Sau3AI fragment of 3,430 base pairs. The clone was shown to express the restriction endonuclease as well as the modification methylase. The nucleotide sequence of the above fragment showed two open reading frames of 461 and 230 codons in tail-to-tail orientation. These were shown to represent the modification methylase M . SinI and the restriction endonuclease R . SinI, respectively. The methylase M . SinI amino acid sequence revealed a considerable similarity to those of other deoxycytidylate methylases. In contrast, endonuclease R . SinI did not exhibit such a similarity to other restriction enzymes.  相似文献   

4.
Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA--A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form--were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90-99%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.  相似文献   

5.
NH2- and COOH-terminal amino acid sequences of the Eco RI restriction and modification enzymes have been determined. The results allow localization of the coding regions within the DNA segment which controls activity of both enzymes. Processing of the endonuclease is limited to removal of NH2-terminal formylmethionine whereas, in the case of the methylase, formylMet-Ala is removed.  相似文献   

6.
The genes of the BanI restriction-modification system specific for GGPyPuCC were cloned from the chromosomal DNA of Bacillus aneurinolyticus IAM1077, and the coding regions were assigned on the nucleotide sequence on the basis of the N-terminal amino acid sequences and molecular weights of the enzymes. The restriction and modification genes coded for polypeptides with calculated molecular weights of 39,841 and 42,637, respectively. Both the enzymes were coded by the same DNA strand. The restriction gene was located upstream of the methylase gene, separated by 21 bp. The cloned genes were significantly expressed in E. coli cells, so that the respective enzymes could be purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that the catalytically active form of the endonuclease was dimeric and that of the methylase was monomeric. Comparison of the amino acid sequences revealed no significant homology between the endonuclease and methylase, though both enzymes recognize the same target sequence. Sequence comparison with other related enzymes indicated that BanI methylase contains sequences common to cytosine-specific methylases.  相似文献   

7.
The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.  相似文献   

8.
The XcyI restriction-modification system from Xanthomonas cyanopsidis recognizes the sequence, CCCGGG. The XcyI endonuclease and methylase genes have been cloned and sequenced and were found to be aligned in a head to tail orientation with the methylase preceding and overlapping the endonuclease by one base pair. The nucleotide sequence codes for an N4 cytosine methyltransferase with a predicted molecular weight of 33,500 and an endonuclease comprised of 333 codons and a molecular weight of 36,600. Sequence comparisons revealed significant similarity between the XcyI, CfrI and SmaI methylisomers. In contrast, no similarity was detected between the primary structures of the XcyI and SmaI endonucleases. The XcyI restriction-modification system is highly homologous to the XmaI genes, although the DNA sequences flanking the genes rapidly diverge. The sequence of the XcyI endonuclease contains two motifs which have recently been identified as essential to the activity of the EcoRV endonuclease.  相似文献   

9.
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.  相似文献   

10.
The transmissive plasmid IncI1 R64 contains the ardA gene encoding the ArdA antirestriction protein. The R64 ardA gene locating in the leading region of plasmid R64 has been cloned and their sequence has been determined. Antirestriction proteins belonging to the Ard family are specific inhibitors of type I restriction-modification enzymes. The IncI1 ColIb-P9 and R64 are closely related plasmids, and the latter specifies an ArdA homologue that is predicted to be 97.6% (162 residues from 166) identical at the amino acid sequence level with the ColIb = P9 equivalent. However, the R64 ArdA selectively inhibits the restriction activity of EcoKi enzyme leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The ColIb-P9 ArdA inhibits restriction endonuclease and methyltransferase activities simultaneously. It is hypothesized that the ArdA protein forms two complexes with the type I restriction-modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonuclease. The association of the ColIb-P9 ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of the R64 ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号