首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The corpus allatum (CA) of adult female Ceratitis capitata produces methyl palmitate (MP) in vitro, in addition to JHB3 and JH III. Biosynthesized MP migrates on TLC and co-elutes from RP-18 HPLC with synthetic MP. Its identity is verified herein by GCMS. MP production is up-regulated twofold by mevastatin, an inhibitor of mevalonic acid-dependent isoprene biosynthesis. Fosmidomycin, an inhibitor of mevalonic acid-independent isoprene synthesis in graminaceous plants, up-regulates MP synthesis by about fourfold. However, it does not depress JHB3 biosynthesis concurrently. This suggests that the initial enzyme(s) in the conversion of 1-deoxy-xylulose 5-phosphate to isoprene is presumably present in C. capitata, but is inhibited by fosmidomycin, and this inhibition diverts precursors to MP synthesis. Phytol, an acyclic diterpene, might be suppressing isoprene biosynthesis by CA, thereby resulting in a fourfold increase in the MP biosynthesis. Linolenic acid is an end-product and its presence in incubation media up-regulates MP biosynthesis by twofold, presumably due to the feedback diversion to biosynthesis of C16:0 and its methyl ester. Biosynthesis of MP is markedly depressed after mating, while otherwise maintained at significantly higher levels in virgin females. MP biosynthesis is significantly reduced in virgin females by direct axonal control but is less consistent after mating.  相似文献   

2.
The relative amounts of methyl palmitate (MP) during the first 10 days post-eclosion were determined in whole-body extracts of adult female Ceratitis capitata by SIM monitoring of the 74 m/z fragment. MP peaks in receptive 3-day-old virgin females coincide with previously reported production of Juvenile Hormone (JH) by the corpus allatum (CA). Mating in the Medfly induces female non-receptivity. Indirect evidence suggests that the mevalonate pathway to sesquiterpene biosynthesis is underdeveloped in newly eclosed females. We propose that the pathway leading to synthesis of JH is markedly diverted in non-receptive virgin females to fatty acid synthesis, and partly so-in non-receptive mated females, leading to production of palmitic acid, presumably methylated thereafter. MP is depressed and remains marginal thereafter for the 7 days examined in the virgin female but goes through an apparent second cycle in the mated female. This contrasts with the consistent increase of allatal biosynthesis of MP of virgin and mated females previously reported and suggests additional control mechanisms in vivo. During the period of reduced receptivity following the first mating a second apparent peak of MP is observed. MP is a metabolic default metabolite of reproductively immature females whose putative role in reproductive physiology remains to be defined.  相似文献   

3.
In Heliothis virescens, reproduction is strictly dependent on juvenile hormone (JH). In females, mating induces a sharp increase in JH titers, which stimulates increased vitellogenin biosynthesis and higher rates of egg production. JH biosynthesis is presumably stimulated by production and/or release of stimulatory neuropeptides such as allatotropins. There is evidence that allatotropin of H. virescens may be structurally related to Manduca sexta allatotropin (Manse-AT). In a radiochemical in vitro assay, synthetic Manse-AT stimulated JH biosynthesis by corpora allata (CA) of virgin H. virescens females in a dose-dependent manner, but had no effect on CA activity in H. virescens males. In females, the CA showed a transient increase in sensitivity to Manse-AT shortly after mating. Several structurally related peptides stimulated CA activity to a similar extent as Manse-AT. Corpora allata activity was stimulated by a Ca2+ ionophore, A23187. A membrane-permeable Ca2+ chelator, BAPTA/AM, antagonized the stimulatory effects of Manse-AT, suggesting that Manse-AT may enhance CA activity by increasing intracellular Ca2+ concentration.  相似文献   

4.
The synthesis of juvenile hormone III (JH III) by the isolated corpora allata (CA) of Aedes aegypti adult female was studied using an in vitro radiochemical assay. We dissected the corpora allata-corpora cardiaca (CA-CC) complex attached to a piece of aorta. The complex was left connected to the intact head capsule to facilitate the visualization and transfer of the glands. A linear increase in the cumulative amount of biosynthesized JH III was found for at least the first 6 h of incubation; approximately 45% of the synthesized JH III was present in the medium. There was a dependence of JH III synthesis on exogenous methionine supply. Using reversed phase high performance liquid chromatography two major labeled products biosynthesized by the CA were separated. They co-migrated with JH III and methyl farnesoate (MF). The identity of the biosynthesized JH III was confirmed by gas chromatography-mass spectrometry. JH III synthesis was only 2.0 fmol/pair gland/h immediately after adult emergence, but increased to 32.6 fmol/ pair gland/h 18 h later in sugar-fed females. Two days after emergence, the CA biosynthetic activity slowly started to decrease, and reached values of around 5.3 fmol/pair gland/h by one week after emergence. Synthesis of JH was similar from either sugar-fed females mated or unmated. A blood meal resulted in a decrease of JH III synthesis in CA from mated females by 12 h after feeding and from virgin females by 24 h after feeding. JH III biosynthesis remained low for at least 96 h in mated females, but was back to higher levels 72 h after feeding in virgin females. Rates of JH III biosynthesis closely reflected the hemolymph levels of JH III both after emergence and after a blood meal described by Shapiro et al. (1986). The activity of the CA in Aedes aegypti females seems to be regulated by developmental changes and nutritional signals, and to be independent of mating stimulus.  相似文献   

5.
The major juvenile hormone (JH) homolog synthesized in vitro by the adult female Medfly (Ceratitis capitata) corpus allatum (CA) is JHB(3), with JH-III the minor homolog. Methyl-incorporation in vitro in post-eclosion virgin females is age-dependent. Basal activity occurs during the first four days post-eclosion and increases significantly thereafter, peaking at five days. Biosynthetic maturation of the mated female CA is delayed by one day and reduced considerably. The delayed response may be due to direct cerebral or neural inhibition. Synthetic Drosophila melanogaster sex peptide depresses JH biosynthesis by the Medfly female CA in vitro. Male-derived accessory gland peptides of the Medfly are transferred to the female during mating and a Medfly SP-analog may be responsible for down-regulation of JH synthesis by the CA in mated Medfly females. Mevinolin, an inhibitor of the mevalonate pathway, significantly reduces the biosynthesis of JHB(3), while farnesoic acid, a proximate precursor of JHIII, significantly stimulates the biosynthesis of both JHB(3) and JHIII in vitro.  相似文献   

6.
Juvenile hormone III biosynthesis by corpora allata of adult female Leucophaea maderae was measured by an in vitro radiochemical assay. In fed females, JH III synthesis increases more than 20-fold after mating to a peak of 55 pmol/pair/h on day 9 and then rapidly declines. This increase in JH III synthesis concomitant with rapid oocyte growth in mated females is not observed in virgin females. The corpora allata from starved, virgin females appear to be inactive. The addition of 150 microM 2E,6E-farnesol (a) JH III precursor) to the incubation medium stimulates the corpora allata from starved, virgin females less than the corpora allata from starved, mated females. Both feeding and mating are necessary for the expression of a normal cycle of JH III synthesis in this cockroach.  相似文献   

7.
The roles of grouping and mating in modulating the activity of the corpora allata (CA) in adult female cockroaches were investigated using the in vitro radiochemical assay of juvenile hormone (JH) biosynthesis. Isolated virgin females have longer, asynchronous cycles of CA activity and oocyte maturation than do isolated females mated on day 8. Three factors were identified as the major contributors to this difference: (1) an experimental artifact of selection for sexually receptive females, (2) a positive effect of grouping on JH synthesis and oocyte maturation, and (3) a positive effect of copulation on oviposition and retention of the ootheca. Mated females constitute a subpopulation of receptive females that differ significantly from other females by having higher rates of JH synthesis prior to mating. The relative importance of such selection is substantial when the rate of mating is low, as in experiments with isolated females that are exposed to males for a short period of time. Long-term exposure of females to males introduces a grouping effect, which obscures any additional effect of mating on CA activity and oocyte development. However, mating influences ootheca formation and its retention. The effect of grouping can be mimicked in isolated females by transection of the nerves connecting the CA–corpora cardiaca complex to the brain, suggesting that in this insect isolation causes brain inhibition of the CA, and grouping provides disinhibitory stimuli that release the CA from brain inhibition.  相似文献   

8.
Vlachou D  Komitopoulou K 《Gene》2001,270(1-2):41-52
We present a total of approximately 15 kb of DNA sequences, encompassing four chorion genes Ccs18, Ccs15, Ccs19, Cc16 and their flanking DNA in the medfly C. capitata. Comparison of coding regions, introns and intergenic sequences in five Dipteran species, D. melanogaster, D. subobscura, D. virilis, D. grimshawi and C. capitata documented an extensive divergence in introns and coding regions, but few well conserved elements in the proximal 5′ flanking regions in all species. These elements are related to conserved regulatory features of three of the genes, including tissue- and temporal regulation. In the fourth, gene s15, significant alterations in the 5′ flanking region may be responsible for its changed temporal regulation in C. capitata. One long intergenic sequence, located in the distal 5′ flanking region of gene s18, is homologous to ACE3, a major amplification control element and contains an 80-bp A/T-rich sequence, known to stimulate strong binding of the origin recognition complex (ORC) in D. melanogaster. Analysis of the nucleotide composition of all chorion genes in C. capitata and D. melanogaster showed that C. capitata exhibit less biased representation of synonymous codons than does D. melanogaster.  相似文献   

9.
Previous studies demonstrate that virgin female adult Helicoverpa armigera (Lepidoptera: Noctuidae) moths exhibit calling behaviour and produce sex pheromone in scotophase from the day after emergence, and that mating turns off both of these pre-mating activities. In the fruit fly Drosophila melanogaster, a product of the male accessory glands, termed sex peptide (SP), has been identified as being responsible for suppressing female receptivity after transfer to the female genital tract during mating. Juvenile hormone (JH) production is activated in the D. melanogaster corpus allatum (CA) by SP in vitro. We herein demonstrate cross-reactivity of D. melanogaster SP in the H. armigera moth: JH production in photophase virgin female moth CA in vitro is directly activated in a dose-dependent manner by synthetic D. melanogaster SP, and concurrently inhibits pheromone biosynthesis activating neuropeptide (PBAN)-activated pheromone production by isolated pheromone glands of virgin females. Control peptides (locust adipokinetic hormone, AKH-I, and human corticotropin, ACTH) do not inhibit in vitro pheromone biosynthesis. Moreover, SP injected into virgin H. armigera females, decapitated 24 h after eclosion, or into scotophase virgin females, suppresses pheromone production. In the light of these results, we hypothesize the presumptive existence of a SP-like factor among the peptides transmitted to female H. armigera during copulation, inducing an increased level of JH production and depressing the levels of pheromone produced thereafter.  相似文献   

10.
Corpora allata (CA) from adult egg-carrying Indian stick insects, Carausius morosus, synthesise and release juvenile hormone (JH) III in vitro. No JH biosynthesis was observed in larvae, young adults, and old adult females that do not carry sclerotised eggs. In females, which bear sclerotised eggs, a consistent JH biosynthesis was observed. Supplementation of precursors of JH biosynthesis (farnesol, mevalonic acid lactone) greatly enhanced JH biosynthesis in a stage-, age-, and dose-dependent manner, but CA from the last larval instar retained the biosynthesised JH within the gland. Elevated calcium concentration in the incubation medium stimulated JH biosynthesis by CA from older adults but had either no or a poor effect on CA from young adults and larvae. The results obtained with farnesol, mevalonic acid lactone, and calcium indicate that the rate-limiting steps of JH biosynthesis very likely occur before the formation of mevalonic acid and that these early steps cannot be stimulated by elevated calcium concentrations in larvae and young adults. In older adults, in which spontaneous JH biosynthesis occurs, elevated calcium concentration can markedly stimulate JH biosynthesis. A pre-purified extract from brains of adult females had a stimulating effect on JH biosynthesis by CA from adult females. The results indicate that JH biosynthesis in C. morosus may require food-derived farnesol and may be regulated by allatotropic signals from the brain, possibly triggered by sclerotised oocytes in the ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号