首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructural studies of thin-sectioned and freeze-cleaved materials were performed on developing retinal tissues of 3- to 9-day-old chick embryos to clarify the junctional structures between neural retinal cells and between neural retinal cells and cells of the pigmented epithelium. Frequency, size and position of gap junctions in developing neural retina are different at each stage of development. In 3-day-old embryos, some cells adhere to each other by gap junctions immediately below the outer limiting membrane of neural retinae. The size and number of gap junctions increase remarkably during 5-6 days of incubation. In this period of development, well developed gap junctions consisting of subcompartments of intramembrane particles are found between cell surfaces at both the outer limiting membrane region and the deeper portion of the neural retina. Gap junctions disappear thereafter, and at 7-5 days of incubation, small gap junctions are predominant between cell surfaces at the outer limiting membrane region, while the frequency of gap junctions in the deeper portion is very low. At 9 days of incubation, gap junctions are rarely found. Typical gap junctions are always found between neural retinal cells and those of the pigmented epithelium in embryos up to 7-5 days of incubation. Tight junctions are not found in the neural retina or between neural retina and pigmented epithelium throughout the stages examined.  相似文献   

2.
As part of a study of cell surface differentiation during chick retina development, a freeze-fracture study of neural retinas from 5 to 10 day embryonic chicks was undertaken. Three classes of changes have been detected. (1) As cells differentiate and become recognizable by their position within the tissue, they acquire characteristic numbers of intramembrane particles in the surfaces in each layer. (2) Small gap junctions appear between cells at the outer limiting membrane of the 5 day retina. At 6 days, they are larger, more numerous and are also found in deeper layers of the tissue. By the seventh day, the size and number of the junctions is greatly reduced; they are not visible after the tenth day. (3) The characteristic lack of particles in the outer limiting membrane of the mature retina appears at the ninth day of incubation, at the time that presumptive photoreceptors extend through the outer limiting membrane. Tight junctions between cells were not observed during this study.  相似文献   

3.
Freeze-fracture analysis of the neural connections in the outer plexiform layer of the retina of primates (Macaca mulatta and Macaca arctoides) demonstrates a remarkable diversity in the internal structure of the synaptic membranes. In the invaginating synapses of cone pedicles, the plasma membrane of the photoreceptor ending contains an aggregate of A-face particles, a hexagonal array of synaptic vesicle sites, and rows of coated vesicle sites, which are deployed in sequence from apex to base of the synaptic ridge. The horizontal cell dendrites lack vesicle sites and have two aggregates of intramembrane A-face particles, one at the interface with the apex of the synaptic ridge, the other opposite the tip of the invaginating midget bipolar dendrite. Furthermore, the horizontal cell dendrites are interconnected by a novel type of specialized junction, characterized by: (a) enlarged intercellular cleft, bisected by a dense plate and traversed by uniformly spaced crossbars; (b) symmetrical arrays of B-face particles arranged in parallel rows within the junctional membranes; and (c) a layer of dense material on the cytoplasmic surface of the membranes. The plasmalemma of the invaginating midget bipolar dendrite is unspecialized. At the contact region between the basal surface of cone pedicles and the dendrites of the flat midget and diffuse cone bipolar cells, the pedicle membrane has moderately clustered A-face particles, but no vesicle sites, whereas the adjoining membrane of the bipolar dendrites contains an aggregate of B-face particles. The invaginating synapse of rod spherules differs from that of cone pedicles, because the membrane of the axonal endings of the horizontal cells only has an A-face particle aggregate opposite the apex of the synaptic ridge. Specialized junctions between horizontal cell processes, characterized by symmetrical arrays of intramembrane B-face particles, are also present in the neuropil underlying the photoreceptor endings. Small gap junctions connect the processes of the horizontal cells; other gap junctions probably connect the bipolar cell dendrites which make contact with each cone pedicle. Most of the junctional specializations typical of the primate outer plexiform layer are also found in the rabbit retina. The fact that specialized contacts between different types of neurons interacting in the outer plexiform layer have specific arrangements of intramembrane particles strongly suggests that the internal structure of the synaptic membranes is intimately correlated with synaptic function.  相似文献   

4.
ASSEMBLY OF GAP JUNCTIONS DURING AMPHIBIAN NEURULATION   总被引:20,自引:16,他引:4       下载免费PDF全文
Sequential thin-section, tracer (K-pyroantimonate, lanthanum, ruthenium red, and horseradish peroxidase), and freeze-fracture studies were conducted on embryos and larvae of Rana pipiens to determine the steps involved in gap junction assembly during neurulation. The zonulae occludentes, which join contiguous neuroepithelial cells, fragment into solitary domains as the neural groove deepens. These plaque-like contacts also become permeable to a variety of tracers at this juncture. Where the ridges of these domains intersect, numerous 85-Å participles apparently pile up against tight junctional remnants, creating arrays recognizable as gap junctions. With neural fold closure, the remaining tight junctional elements disappear and are replaced by macular gap junctions. Well below the junctional complex, gap junctions form independent of any visible, preexisting structure. Small, variegated clusters, containing 4–30 particles located in flat, particle-free regions, characterize this area. The number of particles within these arrays increases and they subsequently blend together into a polygonally packed aggregate resembling a gap junction. The assembly process in both apical and basal regions conforms with the concept of translational movement of particles within a fluid plasma membrane.  相似文献   

5.
本文报道晶状体纤维细胞间间隙连接的形态结构。我们利用冰冻断裂技术,在不同部位的球-和-凹连结的头部以及在纤维细胞和纤维细胞之间都观察到间隙连接的存在。通过极其丰富的上述连接,可实现细胞间代谢物和离子的传递。作者认为:对正常晶状体纤维细胞之间的间隙连接的深入了解,将会为晶状体发病机制的研究提供新的线索。  相似文献   

6.
The freeze-fracturing technique was used to characterize the junctional devices involved in the electrical coupling of frog atrial fibres. These fibres are connected by a type of junction which can be interpreted as a morphological variant of the "gap junction" or "nexus". The most characteristic features are rows of 9-nm junctional particles forming single or anastomosed circular profiles on the inner membrane face, and corresponding pits on the outer membrane face. Very seldom aggregates consisting of few geometrically disposed 9-nm particles are found. The significance of the junctional structures in the atrial fibres is discussed, with respect to present knowledge about junctional features of gap junctions in various tissues, including embryonic ones.  相似文献   

7.
Specimens of aldehyde-fixed and glycerol-impregnated tooth germs obtained from 1-2 day old rats were prepared for ultrathin section studies and for freeze-fracture, with the purpose of studying the structural organization of membranes of developing ameloblasts. In this report we describe unusual membrane domains which were found surrounding several ameloblast gap junctions. Developing ameloblasts - when examined in ultrathin sections - exhibit gap junctions which appear straight, curved or invaginated. In freeze-fracture replicas, in addition to their typical appearance, several gap junctions were found to be surrounded by a membrane margin which was undulating and devoid of intramembrane particles (IMP's). We believe that these hitherto unreported particle-free membrane margins are associated with the formation of curved or invaginated gap junctions. It is possible that these membrane margins are particle-free because plasma membrane proteins (presumably IMP's) become transiently detached from the cytoskeleton and move laterally. It is therefore likely that these margins are pure lipid domains which are more flexible, thus providing a transient hinge-like mechanism which facilitates the movement required for the formation of the curved or invaginated ameloblast gap junctions.  相似文献   

8.
The fine structure of a rectifying electrotonic synapse   总被引:2,自引:0,他引:2       下载免费PDF全文
The synapses between the lateral giant axon and the giant motor axon found in the abdominal ganglia of the ventral nerve cord of the crayfish Procambarus clarkii are electronic. The junctional membrane rectifies, favoring impulse transmission from lateral giant fiber to giant motor fiber. This rectifying electronic junction consists of closely apposed membranes indistinguishable from ordinary arthropod gap junctions. The apposed membranes contain intramembrane particles that are approximately 12.5 nm in width. These particles have a central depression and are arranged in a loosely ordered array with a center-to- center spacing of about 20 nm. The only obvious morphological evidence of asymmetry is the presence of vesicles (about 80 nm in diameter) in the cytoplasm adjacent to the junctional region of the presynaptic lateral giant fiber. Vesicles are not present in the adjacent cytoplasm of the postsynaptic giant motor fiber; however, mitochondria and smooth tubular endoplasmic reticulum are more frequent in the cytoplasm of the giant motor fiber.  相似文献   

9.
Gap junctions from rat liver and fiber junctions from bovine lens have similar septilaminar profiles when examined by thin-section electron microscopy and differ only slightly with respect to the packing of intramembrane particles in freeze-fracture images. These similarities have often led to lens fiber junctions being referred to as gap junctions. Junctions from both sources were isolated as enriched subcellular fractions and their major polypeptide components compared biochemically and immunochemically. The major liver gap junction polypeptide has an apparent molecular weight of 27,000, while a 25,000-dalton polypeptide is the major component of lens fiber junctions. The two polypeptides are not homologous when compared by partial peptide mapping in SDS. In addition, there is not detectable antigenic similarity between the two polypeptides by immunochemical criteria using antibodies to the 25,000-dalton lens fiber junction polypeptide. Thus, in spite of the ultrastructural similarities, the gap junction and the lens fiber junction are comprised of distinctly different polypeptides, suggesting that the lens fiber junction contains a unique gene product and potentially different physiological properties.  相似文献   

10.
Summary The dynamics of gap junctions between outer horizontal cells or their axon terminals in the retina of the crucian carp were investigated during light and dark adaptation by use of ultrathin-section and freeze-fracture electron microscopy. Light adaptation was induced by red light, while dark adaptation took place under ambient dark conditions. The two principal findings were: (1) The density of connexons within an observed gap junction is high in dark-adapted retina, and low in light-adapted retina. This, respectively, may reflect the coupled and uncoupled state of the gap junction. (2) The size of individual gap junctions is larger in light-than in dark-adapted retinae. Whereas the overall area occupied by gap junctions is reduced with dark adaptation, the percentage of small and very small gap junctions increases dramatically. A lateral shift of connexons in the gap junctional membrane is strongly suggested by these reversible processes of densification and dispersion. Two additional possibilities of gap junction modulation are discussed: (1) the de novo formation of very small gap junctions outside the large ones in the first few minutes of dark adaptation, and (2) the rearrangement of a portion of the very large gap junctions. The idea that the cytoskeleton is involved in such modulatory processes is corroborated by thin-section observations.Dedicated to Professor J. Peiffer on the occasion of his 65th birthday  相似文献   

11.
The effects of chemical dissociation on rat ovarian granulosa cell gap junctions has been studied using freeze-fracture electron microscopy. Sequential exposure of granulosa cells within follicles to solutions containing 6·8 mM EGTA [ethylene-bis-(β-aminoethyl ether)-N,N′-tetra acetic acid] and 0·5 M sucrose results in extensive cellular dissociation of the follicular epithelium. Freeze-fracture replicas made from fixed, control or EGTA-treated ovarian follicles exhibit extensive gap junctions between granulosa cells that are characterized by a range of packing order of constituent P-face particles or E-face pits. In contrast, exposure to 0·5 M sucrose containing 1·8 mM EGTA for as little as 1 min results in a consistently close packing of particles or pits which is accompanied by splitting of gap junctions between granulosa cells. The process of junction splitting was studied in detail in replicas prepared from follicles treated sequentially for various periods of time with EGTA and sucrose solutions. Initially, large gap junctions lose their regular shape and fragment into numerous tightly packed aggregates of P-face particles or E-face pits which are separated by unspecialized areas of plasma membrane. Subsequent to junction fragmentation, individual junction plaques separate at sites of cell contact and generate hemijunctions that border the intercellular space, Hemijunctions undergo particle dispersion of the P fracture face which results in an increased density of large intramembrane particles; no corresponding change in E-face pits is discernible at this stage. Morphometric analysis of replicas of tissue undergoing junction splitting indicates that junctional surface area decreases to 10–20% of control levels during this same treatment and so further supports the qualitative observations on junction fragmentation. Viabilities of granulosa cells obtained by these techniques also agree with the sequence observed in the morphometric analysis of the replicas. Finally, within 15 min after placing ovaries in isotonic, Ca2+-containing salt solutions, gap junction reformation occurs by aggregation of particles at sites of intercellular contact. These sites are distinguished by the appearance of short surface protrusions or indentations on their respective P and E fracture faces. The data suggest a mechanism for EGTA-sucrose mediated cellular dissociation in the follicular epithelium in which gap junctional particles are free to move in the plane of the plasma membrane and may be re-utilized to form gap junctions in the presence of extracellular calcium.  相似文献   

12.
Special occluding junctions between Sertoli cells near the base of the seminiferous epithelium are the structural basis of the blood-testis permeability barrier. In micrographs of thin sections, multiple punctate pentalaminar contacts between apposed membranes are observed in the junctional regions.In freeze-fractured mature testis, the junctional membranes exhibit up to 40 parallel circumferentially oriented rows of intramembrane particles preferentially associated with the B-fracture face, but with complementary shallow grooves on the A-face. Short rows of particles may remain with the A-face resulting in discontinuities in the B-face particle rows. In addition, elongate aggregations of particles of uniform size (~70 A) arranged in one or more closely packed rows are occasionally found adjacent to the linear depressions on the A-face of the Sertoli junction. These are interpreted as atypical gap junctions.In immature testis, occluding junctions are absent but typical gap junctions are common. These gradually disappear. In the second postnatal week, linear arrays of particles appear on the B-face. Initially meandering and highly variable in direction, these gradually adopt a consistent orientation parallel to the cell base. The establishment of the blood-testis barrier appears to be correlated with this reorganization of the intramembrane particle rows. Sertoli junctions were shown to be resistant to hypertonic solutions that rapidly dissociate junctions of other epithelia.Sertoli junctions thus differ from other occluding junctions in their (1) basal location, (2) large number of parallel particle rows, (3) absence of anastomosis between rows, (4) preferential association of the particles with the B-face, (5) intercalation of atypical gap junctions, (6) unusual resistance to dissociation by hypertonic solutions.  相似文献   

13.
Summary Labyrinth and nephridial canal cells of the crayfish (Orconectes virilis) antennal gland possess two types of intercellular junctions revealed by freeze-fracture studies. Apical margins of the cells are connected by long septate junctions. In replicas, these junctions consist of many parallel rows of 80–140 Å intramembrane particles situated on the PF membrane face (EF and PF fracture faces of Branton et al., 1975). Rows of pits are found on the EF fracture face and are deemed complementary to the rows of particles. Moreover, lateral margins of basal regions of the epithelial cells are attached by many intercellular junctions. These contacts are characterized in thin plastic sections by a narrow dense cytoplasmic plaque located subjacent to the plasma membrane at sites of adjoined cells, and 5 to 12 fine strands of dense material that extend across the intercellular gap between adjoined cells. In freeze-fracture replicas, EF intramembrane faces basal to the region of the plasma membrane containing septate junctions exhibit numerous discoid clusters of particles. The particle aggregates, assumed to represent freeze-cleave images of adhering junctions, range from 900 to 3,700 Å in diameter, with individual particles about 185 Å in diameter. These junctions appear to connect epithelial cell processes formed by basal infoldings of the plasma-lemma, and occur between adjacent cells as well as adjacent processes of a single cell. The discrete aggregates of particles resemble replicated desmosomes (Shienvold and Kelly, 1974) and hemi-desmosomes (Shivers, 1976); therefore, they probably do not constitute a basis for electrical coupling between antennal gland epithelial cells.Supported by the National Research Council of Canada  相似文献   

14.
Development of the external limiting membrane of the retina in English springer spaniel fetuses and neonates with incipient stages of retinal dysplasia and in normal mongrel fetuses and neonates was examined using transmission electron microscopy and the freeze-fracture technique. The external limiting membrane of the retina of normal canine fetuses was composed of zonulae adherentes in which there were focal areas of apparent apposition between adjacent ventricular cell membranes. Freeze-fracture examination revealed gap junctions within the external limiting membrane that were composed of 8-10 nm P-face particles in aggregates of variable size and shape. These junctions corresponded to areas of focal membrane apposition. Tight junction strands were also identified in deep E-face grooves which were located perpendicular to the external limiting membrane. At day 46 of gestation in incipiently dysplastic English springer spaniel fetal eyes, there was a marked decrease in the size and area occupied by gap junctions within the external limiting membrane as compared with retinas of mongrel control fetuses at the same age and of other age groups. This apparent loss of gap junctions, coincident with the incipient onset of histologically detectable dysplastic events in the sensory retina, may contribute to the morphogenesis of the defect.  相似文献   

15.
Human fetal primary tooth germs in the cap stage were fixed with a glutaraldehyde-formaldehyde mixture, and formative processes of tight and gap junctions of the inner enamel epithelium and preameloblasts were examined by means of freeze-fracture replication. Chains of small clusters of particles on the plasma membrane P-face of the inner enamel epithelium and preameloblasts were the initial sign of tight junction formation. After arranging themselves in discontinuous, linear arrays in association with preexisting or forming gap junctions, these particles later began revealing smooth, continuous tight junctional strands on the plasma membrane P-face and corresponding shallow grooves of a similar pattern on the E-face. Although they exhibited evident meshwork structures of various extents at both the proximal and distal ends of cell bodies, they formed no zonulae occludentes. Small assemblies of particles resembling gap junctions were noted at points of cross linkage of tight junctional strands; but large, mature gap junctions no longer continued into the tight junction meshwork structure. Gap junctions first appeared as very small particle clusters on the plasma membrane P-face of the inner enamel epithelium. Later two types of gap junctions were recognized: one consisted of quite densely aggregated particles with occasional particle-free areas, and the other consisted of relatively loosely aggregated particles with particle-free areas and aisles. Gap junction maturation seemed to consist in an increase of particle numbers. Fusion of gap junctions in the forming stage too was recognized. The results of this investigation suggest that, from an early stage in their development, human fetal ameloblasts possess highly differentiated cell-to-cell interrelations.  相似文献   

16.
Intercellular junction formation in preimplantation mouse embryos was investigated with thin-section and freeze-fracture electron microscopy. At the four-cell stage, regions of close membrane apposition with focal points of membrane contact and occasional underlying cytoplasmic densities were observed between blastomeres of thin-sectioned embryos. Corresponding intramembrane specializations were not, however, observed in freeze-fractured embryos. At the 8- to 16-cell stage, small gap and macula occludens junctions and complexes of these junctions were observed at all levels between blastomeres of freeze-fractured embryos. As development progressed from the early to mid 8- to 16-cell stage, the size of the occludens/gap junction complexes increased, forming fascia occludens/gap junction complexes. At the morula stage, gap junctions and occludens/gap junction complexes were observed on both presumptive trophoblast and inner cell-mass cells. Zonula occludens junctions were first observed at the morula stage on presumptive trophoblast cells of freeze-fractured embryos. The number of embryos possessing zonula occludens junctions increased at the mid compared to the early morula stage. At the blastocyst stage, junctional complexes consisting of zonula occludens, macula adherens, and gap junctions were observed between trophoblast cells of freeze-fractured and thin-sectioned embryos. Isolated gap and occludens junctions, adherens junctions, and occludens/gap junction complexes were observed on trophoblast and inner cell-mass cells.  相似文献   

17.
To study correlation between membrane structure and photoreceptor function, we compared the size and density of intramembrane particles (IMPs) in various membrane compartments of freeze-fractured retinas in a cuttle-fish, Sepiella japonica, and an octopus, Octopus ocellatus. Distribution of gap junctions in the retinas was also examined. Similar results were obtained in the two species. P-faces of both rhabdomeric microvillar membrane and non-rhabdomeric plasma membrane of the apical process were characterized by a random distribution of dense IMPs (ca. 5500-6500/microns2), which showed a unimodal size distribution with a mean diameter of ca. 10 nm. Unlike other invertebrate ocelli, the plasma membrane of the cell body in both the outer and inner segments had significantly denser P-face particles (ca. 7500-8000/microns2) than the rhabdomeric microvillar membrane. The size distribution of IMPs in each part of the membrane was also unimodal, but with a mean diameter of ca. 8 nm. In tangential fractures, each lamella of the myeloid body showed a patchwork of P-faces with irregularly arranged, dense particles and E-faces with orderly patterened granulation. Density and size distribution of the P-face particles in the myeloid membrane resembled those in the rhabdomeric microvillar membrane. The plasma membranes of the supporting cell and the gial cell had relatively sparse P-face particles (ca. 1500-3000/microns2). In addition to the previously reported gap junctions, which connected visual cell inner segments with each other, directly or via collaterals, small gap junctions were found between the visual cell axons and presumed efferent nerve fibres in the plexiform layer. Large-sized gap junctions provided mutual connections for both supporting cells and glial cells. In conclusion, IMPs of 10 nm in mean diameter in the microvillar and non-microvillar parts of the apical process plasma membrane and in the myeloid membrane represent the molecules or their clusters of two photopigments in the cephalopod visual cell, rhodopsin and retinochrome, respectively, and electrical transmission plays a role in visual cell-efferent nerve interactions.  相似文献   

18.
In the midgut of a Myriapoda continuous junctions and gap junctions are described for the first time. Continuous junctions form a belt around the upper two-thirds of each cell. In the intercellular space long and smooth septa are clustered in sinuous strands and intramembrane particles appear on the PF. In the gap junctions the intramembrane particles are located on the EF.  相似文献   

19.
Summary Gap junctions exist in the septa between the segments of the lateral giant axons in the ventral nerve cord of the crayfish Procambarus. A large increase in the resistance (uncoupling) of these gap junctions was brought about by mechanical injury to the axonal segments. Both thin sections and freeze-fracture preparations were used to monitor the morphological changes which occurred up to 45 min after injury.There was no apparent change in the organization (a loose polygonal array) of the intramembrane particles which make up the junctional complex up to 45 min after injury. In some instances, however, the intramembrane particles appeared to have moved away from the junctional area. Other junctional regions were internalized and appeared similar to what have been called annular gap junctions. Also at this time (20–25 min after injury), a dense cytoplasmic plug formed in uninjured axon near the junctional region. It is concluded that the gap junctions that exhibit a loose polygonal organization of the intramembrane particles may be either in a state of low resistance (coupled) or a state of high resistance (uncoupled).  相似文献   

20.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号