首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The aim of this article is to identify the strongest evolutionary debunking argument (EDA) against moral realism and to assess on which empirical assumptions it relies. In the recent metaethical literature, several authors have de-emphasized the evolutionary component of EDAs against moral realism: presumably, the success or failure of these arguments is largely orthogonal to empirical issues. I argue that this claim is mistaken. First, I point out that Sharon Street’s and Michael Ruse’s EDAs both involve substantive claims about the evolution of our moral judgments. Next, I argue that combining their respective evolutionary claims can help debunkers to make the best empirical case against moral realism. Some realists have argued that the very attempt to explain the contents of our endorsed moral judgments in evolutionary terms is misguided, and have sought to escape EDAs by denying their evolutionary premise. But realists who pursue this reply can still be challenged on empirical grounds: debunkers may argue that the best, scientifically informed historical explanations of our moral endorsements do not involve an appeal to mind-independent truths. I conclude, therefore, that the empirical considerations relevant for the strongest empirically driven argument against moral realism go beyond the strictly evolutionary realm; debunkers are best advised to draw upon other sources of genealogical knowledge as well.  相似文献   

2.
This paper challenges the claim that science is metaphysically neutral upheld by contenders of the separation of peacefully co-existent science and religion and by evolutionary theists. True, naturalistic metaphysical claims can neither be refuted nor proved and are thus distinct from empirical hypotheses. However, metaphysical assumptions not only regulate the theoretical and empirical study of nature, but are increasingly supported by the growing empirical body of science. This historically evolving interaction has contributed to the development of a naturalistic worldview that renounces the necessity of a transcendent god and of purposeful design. The thesis presented here differs not only from the claims of the "separatists" and of evolutionary theists. In pointing to the metaphysical aspects of science, I also criticize the failure of some evolutionary naturalists to distinguish between empirical and metaphysical contentions. Most important, based on the examination of science suggested here, creationists' false accusation that science is only a naturalistic dogma is refuted. Finally, the difficulties involved in the position endorsed here for the public support of evolution are acknowledged, taking into account the high religious profile of the American society and the social and political context in the US and in other countries.  相似文献   

3.
I discuss two types of evidential problems with the most widely touted experiments in evolutionary psychology, those performed by Leda Cosmides and interpreted by Cosmides and John Tooby. First, and despite Cosmides and Tooby's claims to the contrary, these experiments don't fulfil the standards of evidence of evolutionary biology. Second Cosmides and Tooby claim to have performed a crucial experiment, and to have eliminated rival approaches. Though they claim that their results are consistent with their theory but contradictory to the leading non-evolutionary alternative, Pragmatic Reasoning Schemas theory, I argue that this claim is unsupported. In addition, some of Cosmides and Tooby's interpretations arise from misguided and simplistic understandings of evolutionary biology. While I endorse the incorporation of evolutionary approaches into psychology, I reject the claims of Cosmides and Tooby that a modular approach is the only one supported by evolutionary biology. Lewontin's critical examinations of the applications of adaptationist thinking provide a background of evidentiary standards against which to view the currently fashionable claims of evolutionary psychology.  相似文献   

4.
Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause–effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist. Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.  相似文献   

5.
The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research.  相似文献   

6.
Few areas of science have benefited more from the expansion in sequencing capability than the study of microbial communities. Can sequence data, besides providing hypotheses of the functions the members possess, detect the evolutionary and ecological processes that are occurring? For example, can we determine if a species is adapting to one niche, or if it is diversifying into multiple specialists that inhabit distinct niches? Fortunately, adaptation of populations in the laboratory can serve as a model to test our ability to make such inferences about evolution and ecology from sequencing. Even adaptation to a single niche can give rise to complex temporal dynamics due to the transient presence of multiple competing lineages. If there are multiple niches, this complexity is augmented by segmentation of the population into multiple specialists that can each continue to evolve within their own niche. For a known example of parallel diversification that occurred in the laboratory, sequencing data gave surprisingly few obvious, unambiguous signs of the ecological complexity present. Whereas experimental systems are open to direct experimentation to test hypotheses of selection or ecological interaction, the difficulty in “seeing ecology” from sequencing for even such a simple system suggests translation to communities like the human microbiome will be quite challenging. This will require both improved empirical methods to enhance the depth and time resolution for the relevant polymorphisms and novel statistical approaches to rigorously examine time-series data for signs of various evolutionary and ecological phenomena within and between species.  相似文献   

7.
Phylogenetic comparative methods that incorporate intraspecific variability are relatively new and, so far, not especially widely used in empirical studies. In the present short article we will describe a new Bayesian method for fitting evolutionary models to comparative data that incorporates intraspecific variability. This method differs from an existing likelihood-based approach in that it requires no a priori inference about species means and variances; rather it takes phenotypic values from individuals and a phylogenetic tree as input, and then samples species means and variances, along with the parameters of the evolutionary model, from their joint posterior probability distribution. One of the most novel and intriguing attributes of this approach is that jointly sampling the species means with the evolutionary model parameters means that the model and tree can influence our estimates of species mean trait values, not just the reverse. In the present implementation, we first apply this method to the most widely used evolutionary model for continuously valued phenotypic trait data (Brownian motion). However, the general approach has broad applicability, which we illustrate by also fitting the λ model, another simple model for quantitative trait evolution on a phylogeny. We test our approach via simulation and by analyzing two empirical datasets obtained from the literature. Finally, we have implemented the methods described herein in a new function for the R statistical computing environment, and this function will be distributed as part of the 'phytools' R library.  相似文献   

8.
A key priority in infectious disease research is to understand the ecological and evolutionary drivers of viral diseases from data on disease incidence as well as viral genetic and antigenic variation. We propose using a simulation-based, Bayesian method known as Approximate Bayesian Computation (ABC) to fit and assess phylodynamic models that simulate pathogen evolution and ecology against summaries of these data. We illustrate the versatility of the method by analyzing two spatial models describing the phylodynamics of interpandemic human influenza virus subtype A(H3N2). The first model captures antigenic drift phenomenologically with continuously waning immunity, and the second epochal evolution model describes the replacement of major, relatively long-lived antigenic clusters. Combining features of long-term surveillance data from the Netherlands with features of influenza A (H3N2) hemagglutinin gene sequences sampled in northern Europe, key phylodynamic parameters can be estimated with ABC. Goodness-of-fit analyses reveal that the irregularity in interannual incidence and H3N2''s ladder-like hemagglutinin phylogeny are quantitatively only reproduced under the epochal evolution model within a spatial context. However, the concomitant incidence dynamics result in a very large reproductive number and are not consistent with empirical estimates of H3N2''s population level attack rate. These results demonstrate that the interactions between the evolutionary and ecological processes impose multiple quantitative constraints on the phylodynamic trajectories of influenza A(H3N2), so that sequence and surveillance data can be used synergistically. ABC, one of several data synthesis approaches, can easily interface a broad class of phylodynamic models with various types of data but requires careful calibration of the summaries and tolerance parameters.  相似文献   

9.
Heritable trait variation is a central and necessary ingredient of evolution. Trait variation also directly affects ecological processes, generating a clear link between evolutionary and ecological dynamics. Despite the changes in variation that occur through selection, drift, mutation, and recombination, current eco‐evolutionary models usually fail to track how variation changes through time. Moreover, eco‐evolutionary models assume fitness functions for each trait and each ecological context, which often do not have empirical validation. We introduce a new type of model, Gillespie eco‐evolutionary models (GEMs), that resolves these concerns by tracking distributions of traits through time as eco‐evolutionary dynamics progress. This is done by allowing change to be driven by the direct fitness consequences of model parameters within the context of the underlying ecological model, without having to assume a particular fitness function. GEMs work by adding a trait distribution component to the standard Gillespie algorithm – an approach that models stochastic systems in nature that are typically approximated through ordinary differential equations. We illustrate GEMs with the Rosenzweig–MacArthur consumer–resource model. We show not only how heritable trait variation fuels trait evolution and influences eco‐evolutionary dynamics, but also how the erosion of variation through time may hinder eco‐evolutionary dynamics in the long run. GEMs can be developed for any parameter in any ordinary differential equation model and, furthermore, can enable modeling of multiple interacting traits at the same time. We expect GEMs will open the door to a new direction in eco‐evolutionary and evolutionary modeling by removing long‐standing modeling barriers, simplifying the link between traits, fitness, and dynamics, and expanding eco‐evolutionary treatment of a greater diversity of ecological interactions. These factors make GEMs much more than a modeling advance, but an important conceptual advance that bridges ecology and evolution through the central concept of heritable trait variation.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号