首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Ghrelin blunted vascular calcification in vivo and in vitro in rats   总被引:9,自引:0,他引:9  
Li GZ  Jiang W  Zhao J  Pan CS  Cao J  Tang CS  Chang L 《Regulatory peptides》2005,129(1-3):167-176
Ghrelin is a new peptide with regulatory actions in growth hormone secretion in the anterior pituitary gland and in energy metabolism. Currently, ghrelin has potently protective effects in cardiovascular diseases. We used an in vivo model of rat vascular calcification induced by vitamin D3 and nicotine and one of cultured rat vascular smooth muscular cells (VSMCs) calcification induced by beta-glycerophosphate to study the possible mechanism in the regulatory action of ghrelin in vascular calcification. Calcification increased total Ca2+ content and 45Ca2+ deposition in aortas and VSMCs and alkaline phosphatase (ALP) activation in plasma, aortas and VSMCs. However, calcified aortas and VSMCs showed a significant decrease in osteopontin (OPN) mRNA expression and a marked reduction of ghrelin levels in plasma and its mRNA expression in aortas. The aortic calcification was significantly attenuated by subcutaneous administration of ghrelin 30 and 300 nmol kg(-1) day(-1) for 4 weeks, and the latter dosage was more potent than the former. Ghrelin treatment at the two dosages reduced the total aorta Ca2+ content by 24.4% and 28.1%, aortic 45Ca2+ deposition by 18.4% and 24.9%, plasma ALP activity by 36.6% and 76.7%, and aortic ALP activity by 10.3% and 47.6% (all P < 0.01 or 0.05), respectively. Ghrelin at 10(-8)-10(-6) mol/L attenuated the calcification in cultured VSMCs, with decreased total Ca2+ content, 45Ca2+ deposition and ALP activity and increased OPN mRNA expression, in a concentration-dependent manner. In addition, endothelin levels in plasma and aortas and its mRNA expression in aortas significantly increased with calcification, but ghrelin treatment significantly decreased endothelin levels and mRNA expression, with the high dosage being more potent than the lower dosage. These results indicate that local ghrelin in vascular was down-regulated during vascular calcification, whereas administration of ghrelin effectively attenuated vascular and VSMCs calcification.  相似文献   

2.
目的:在大鼠血管钙化模型上,观察外源性补充硫酸镁对大鼠血管钙化的影响,以探讨硫酸镁在血管钙化中作用及机制。方法:用维生素D3加尼古丁诱导大鼠血管钙化,von Kossa染色、钙含量测定及碱性磷酸酶活性测定判断血管钙化程度;用半定量RT-PCR方法测定血管钙化标志分子骨桥蛋白mRNA水平;用生物化学方法测定血管一氧化氮(NO)、超氧化物歧化酶(SOD)和丙二醛(MDA)含量。结果:钙化组大鼠血压升高,收缩压较对照组高27%(P<0.05);血管von Kossa染色见血管中膜弹性纤维间可见大量棕黑色颗粒沉积,主动脉钙含量及碱性磷酸酶活性分别较对照高3.9倍和3.4倍(P<0.01),钙化血管组织骨桥蛋白mRNA表达上调40%(P<0.01),血管钙化后可加重血管组织过氧化损伤;而诱导钙化后外源性补充硫酸镁可减轻血管钙化程度,与钙化组比较,低、高剂量硫酸镁组均明显缓解上述指标的变化。结论:诱导血管钙化后外源性补充硫酸镁可以减轻大鼠血管钙化和血管损伤程度。  相似文献   

3.
Zhang B  Tang C  Du J 《Life sciences》2003,72(9):1027-1037
The aim of the present study was to investigate the change in heme oxygenase (HO)-carbon monoxide (CO)-cyclic guanosine monophosphate (cGMP) pathway in vascular calcification. Vascular calcification model was established in rats by using vitamin D(3) and nicotine. Vascular calcium content, alkaline phosphatase (ALP) activity, HO activity, HbCO formation and content of cGMP in vessels were measured. Immunochemistry (IH) for HO 1 expression and in situ hybridization (ISH) for HO 1 mRNA were observed. Compared to those of control rats, the aortic calcium content and vascular ALP activity in rats of the calcified group (VDN group) were obviously increased, but HO 1 activity, CO concentration and cGMP content in vessels of rats in VDN group were markedly decreased. Expressions of HO-1 protein and mRNA were significantly decreased compared to control rats. Vascular calcification might induce a down regulation in vascular HO-CO-cGMP pathway.  相似文献   

4.
Qi YF  Wang SH  Zhang BH  Bu DF  Shu TC  Du JB 《Peptides》2003,24(2):287-294
This work was aimed to explore the changes and significance of adrenomedullin (ADM) mRNA and receptor activity modifying protein 2 (RAMP2) mRNA in calcified vascular smooth muscle cells (VSMCs). Calcification of cultured rat VSMCs was produced by incubation with beta-glycerophosphate. Content of ADM released by VSMCs was measured by radioimmunoassay (RIA). The amount of ADM mRNA and RAMP2 mRNA was determined by competitive quantitative RT-PCR. The intracellular calcium content, alkaline phosphatases activity and cellular (45)Ca(2+)-uptake were determined. The results showed that the content of calcium, (45)Ca(2+)-uptake and alkaline phosphatases activity in calcified VSMCs were increased by 118%, 174% and seven-fold (all P<0.01), respectively, compared with control VSMCs. Content of ADM in medium was increased by 99% (P<0.01). Furthermore, it was found that the amount of ADM mRNA and RAMP2 mRNA in calcified cells was elevated by 78 and 56% (all P<0.05), respectively, compared with control. The elevated levels of RAMP2 mRNA were in positive correlation with ADM mRNA (r=0.76, P<0.05) in calcified VSMCs. In conclusion, calcified VSMCs generated an increased amount of ADM, and up-regulated gene expressions of ADM and RAMP2.  相似文献   

5.
高同型半胱氨酸血症促进大鼠血管钙化   总被引:1,自引:1,他引:0  
Yang Y  Yu F  Li JX  Tang CS  Li CY 《中国应用生理学杂志》2004,20(4):333-336,F003
目的:在大鼠血管钙化模型上,探讨高同型半胱氨酸血症对血管钙化的影响及其作用机制.方法:用维生素D3加尼古丁诱导大鼠血管钙化模型,并给以高蛋氨酸饮食六周诱导大鼠高同型半胱氨酸血症,用高效液相色谱法检测血浆总同型半胱氨酸(Hcy)水平;采用血管组织vonKossa染色、钙含量测定、碱性磷酸酶(ALP)活性和骨钙素(OC)含量测定以判断血管钙化程度,同时测定血浆脂质共轭烯(Diene键)含量反映其脂质过氧化水平.结果:钙化组大鼠血管yon Kossa染色可见大量黑色颗粒沉积,其血管的钙含量,碱性磷酸酶活性及骨钙素含量分别较对照组增加8.09倍、45.57%和2.81倍(P<0.01).高蛋氨酸饮食的钙化组大鼠血管内钙含量较单纯钙化组增高了34.29%,而碱性磷酸酶活性及骨钙素含量则较单纯的钙化组降低29.13%和74.69%(P<0.01).钙化组大鼠血浆脂质共轭烯含量与对照组比较无显著性差异,单纯高蛋氨酸饮食和钙化加高蛋氨酸饮食大鼠血浆脂质共轭烯含量较对照组增加了1.93和2.89倍(P<0.01),而钙化加高蛋氨酸饮食大鼠血浆脂质共轭烯含量较单纯高蛋氨酸饮食大鼠又增加了32.90%(P<0.01).结论:高同型半胱氨酸血症可以促进血管的钙化,可能与其所致的脂质过氧化程度增强有关.  相似文献   

6.
Li J  Chai S  Tang C  Du J 《Life sciences》2003,74(4):451-461
Aortic calcification was demonstrated in experimental animal models of hyperhomocysteinemia. Mild hyperhomocysteinemia was associated with aortic calcification, suggesting a relationship between homocysteine (HCY) and the pathogenesis of aortic calcification. In the present study, the effect of HCY on vascular calcification was examined in calcifying and non-calcifying vascular smooth muscle cells (VSMCs). Cell calcification was induced by incubation of VSMCs with beta-glycerophosphate. Proliferation of VSMCs was studied by cell counting, 3H-thymidine (3H-TdR) and 3H-leucine (3H-Leu) incorporation. 45Ca accumulation, cell calcium content, and alkaline phosphatase (ALP) activity were measured as indices of calcification. The results showed that the proliferation of calcifying VSMCs, which was indicated by cell counting, 3H-TdR and 3H-Leu incorporation in calcifying VSMCs, was enhanced as compared with that of non-calcifying VSMCs. HCY promoted increases in cell number, 3H-TdR and 3H-Leu incorporation in both calcifying and non-calcifying VSMCs, but with more prominent effect in calcifying VSMCs. The stimulating effects of HCY on the three parameters in calcifying VSMCs were antagonized by PD98059, a specific inhibitor of mitogen activated protein kinase kinase (MAPKK). The ALP activity, 45Ca uptake, and calcium deposition in the calcifying VSMCs were greater than those in non-calcifying VSMCs. PD98059 had no effect on ALP activity, 45Ca uptake, and calcium deposition in calcifying VSMCs. HCY caused marked increases in 45Ca uptake and calcium deposition both in calcifying and non-calcifying VSMCs. HCY, however, enhanced ALP activity in the calcified VSMCs but not in the non-calcifying VSMCs. The non-calcifying VSMCs treated with HCY showed the same low ALP activity, as did the control VSMCs. In calcifying VSMCs, the HCY-induced increases in 45Ca uptake, calcium deposition, and ALP activity were also attenuated by PD98059. The results demonstrated that HCY potentiated VSMC calcification probably through the mechanisms by which HCY promotes atherosclerosis.  相似文献   

7.
Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease. Paracrine/autocrine factors such as vasoactive peptides are involved in VC development. Here, we investigated the expression of the novel peptide C-type natriuretic peptide (CNP) in the vasculature, tested its ability to prevent VC in vivo and in vitro, and examined the mechanism involved. Rat aortic VC was induced by vitamin D3 plus nicotine (VDN). CNP (500 ng/kg/h) was administered by mini-osmotic pump. Calcification was examined by von Kossa staining; CNP and cyclic guanosine monophosphate (cGMP) contents were detected by radioimmunoassay, and mRNA and protein levels were examined by real-time PCR and Western blot analysis in aortas and calcified vascular smooth muscle cells (VSMCs). VDN-treated rat aortas showed higher CNP content and decreased expression of its receptor natriuretic peptide receptor B, along with increased vascular calcium deposition and alkaline phosphatase (ALP) activity. Low CNP levels were accompanied by increased vascular calcium deposition and ALP activity in VDN-treated rats when compared to vehicle treatment, which was further confirmed in cultured VSMCs. Administration of CNP greatly reduced VC in VDN-treated aortas compared with controls, which was confirmed in calcified VSMCs. The decrease in alpha-actin expression was ameliorated by CNP in vitro. Moreover, protein expression levels of osteopontin (OPN) were significantly up-regulated in calcified aortas, and CNP increased OPN expression in calcified aortas. Furthermore, CNP downregulated OPN and bone morphogenic protein 2 (BMP-2) expression in calcified aortas and VSMCs. Modulation of OPN and BMP-2 expression by CNP and the beneficial effects of CNP on calcified VSMCs were blocked significantly by protein kinase G inhibitor H7. Impaired local endogenous CNP and its receptor system may be associated with increased mineralization in vivo in rat aortas with VC, and administration of CNP inhibits VC development in vivo and in vitro, at least in part, via a cGMP/PKG pathway.  相似文献   

8.
Cortistatin (CST) is a newly discovered polypeptide with multiple biological activities that plays a regulatory role in the nervous, endocrine and immune systems. However, the role of CST in the pathogenesis of cardiovascular diseases remains unclear. In this study, we investigated in rats whether CST inhibits vascular calcification induced by vitamin D3 and nicotine treatment in vivo and calcification of cultured rat vascular smooth muscular cells (VSMCs) induced by beta-glycerophosphate in vitro and the underlying mechanism. We measured rat hemodynamic variables, alkaline phosphatase (ALP) activity, calcium deposition and pathological changes in aortic tissues and cultured VSMCs. CST treatment significantly improved hemodynamic values and arterial compliance in rats with vascular calcification, by decreasing systolic blood pressure, pulse pressure, left ventricular end-systolic pressure and left ventricular end-diastolic pressure. CST also significantly decreased ALP activity and calcium deposition, alleviated pathological injury and down-regulated the mRNA expression of type III sodium-dependent phosphate co-transporter-1 (Pit-1) in aortic tissues. It dose-independently inhibited the calcification of VSMCs by decreasing ALP activity and calcium deposition, alleviating pathologic injury and down-regulating Pit-1 mRNA expression. As with CST treatment, ALP activation and calcium deposition were decreased significantly on treatment with ghrelin, the endogenous agonist of growth hormone secretagogue receptor 1a (GHSR1a), but not significantly with somatostatin-14 or proadrenomedullin N-terminal 20 peptide in VSMCs. Further, growth hormone-releasing peptide-6[D-lys], the endogenous antagonist of GHSR1a, markedly reversed the increased ALP activity and calcium deposition in VSMCs. CST could be a new target molecule for the prevention and therapy of vascular calcification, whose effects are mediated by GHSR1a rather than SSTRs or Mrg X2.  相似文献   

9.
Liu H  Yuan L  Xu S  Zhang T  Wang K 《Life sciences》2004,76(5):533-543
Oxysterols found in atherosclerotic plaque may be associated with vascular calcification. We investigated the effect of oxysterol cholestane-3beta, 5alpha, 6beta-triol (Triol) on in vitro calcification of rat vascular smooth muscle cells (VSMCs). In vitro calcification was induced by incubation of VSMCs with beta-glycerophosphate. Calcifying nodule formation, calcium deposition in extracellular matrix, and alkaline phosphatase (ALP) activity were measured as indices of calcification. Because apoptotic bodies can serve as nucleation sites for calcification, apoptosis of calcifying VSMCs was determined by Hoechst 33258 staining, TUNEL, and FITC-labeled annexin V/PI double staining. The calcium deposition and ALP activity in calcifying VSMCs were much higher than those in non-calcifying VSMCs. Triol increased calcifying nodule formation, calcium deposition, ALP activity, and apoptosis of nodular cells in calcifying VSMCs. As determined by 2,7-dichlorofluorescein fluorescence, Triol induced the generation of reactive oxygen species (ROS) in calcifying VSMCs dose- and time-dependently. Triol-induced increases in calcium deposition, ALP activity, apoptosis, and ROS generation were all attenuated by antioxidant vitamin C plus vitamin E (VC + VE). The results demonstrated that Triol promoted VSMCs calcification through direct increase of ALP activity and apoptosis, probably by ROS-related mechanism.  相似文献   

10.
FGF21, a special member of FGF superfamily, has been proven to have pleiotropic metabolic effects and many potential therapeutic action in various metabolic disorders. Vascular calcification (VC), a perplexing clinical issue, is a major risk factor for many cardiovascular diseases, especially for patients with some metabolic diseases. However, the role of FGF21 on VC in vivo remains unclear. Thus, in this study, we observed the effect and mechanism of FGF21 on VC induced by vitamin D3 plus nicotine (VDN) treated rats. After four weeks' treatment, the calcium overload is mainly manifested in the increased blood pressure, aortic calcium content and ALP activity. Also, the HE and Alizarin-red S staining showed the structural damage of calcified vessel walls. In addition, the level of endogenous FGF21/β-Klotho/FGFR1 axis was up-regulated in the aortas of VC rats. Furthermore, exogenous FGF21 treatment significantly ameliorated the aortic injury and calcification in VC rats, and the level of β-Klotho and FGFR1 were furtherly increase. Moreover, FGF21 inhibited the osteogenic transition of VSMCs by down-regulating the expression of bone-associated proteins such as osteopontin (OPN), osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2), together with restored the expression of SM22α and SM α-actin, which are two of lineage markers in VSMCs. We provide the first evidence that FGF21 can inhibit the development of VC by inhibiting the osteogenic transition of VSMCs in rats. FGF21 might be an efficient endogenous vasoprotective factor for calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号