首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A growing number of proteins are being identified that are biologically active though intrinsically disordered, in sharp contrast with the classic notion that proteins require a well-defined globular structure in order to be functional. At the same time recent work showed that aggregation and amyloidosis are initiated in amino acid sequences that have specific physico-chemical properties in terms of secondary structure propensities, hydrophobicity and charge. In intrinsically disordered proteins (IDPs) such sequences would be almost exclusively solvent-exposed and therefore cause serious solubility problems. Further, some IDPs such as the human prion protein, synuclein and Tau protein are related to major protein conformational diseases. However, this scenario contrasts with the large number of unstructured proteins identified, especially in higher eukaryotes, and the fact that the solubility of these proteins is often particularly good. We have used the algorithm TANGO to compare the beta aggregation tendency of a set of globular proteins derived from SCOP and a set of 296 experimentally verified, non-redundant IDPs but also with a set of IDPs predicted by the algorithms DisEMBL and GlobPlot. Our analysis shows that the beta-aggregation propensity of all-alpha, all-beta and mixed alpha/beta globular proteins as well as membrane-associated proteins is fairly similar. This illustrates firstly that globular structures possess an appreciable amount of structural frustration and secondly that beta-aggregation is not determined by hydrophobicity and beta-sheet propensity alone. We also show that globular proteins contain almost three times as much aggregation nucleating regions as IDPs and that the formation of highly structured globular proteins comes at the cost of a higher beta-aggregation propensity because both structure and aggregation obey very similar physico-chemical constraints. Finally, we discuss the fact that although IDPs have a much lower aggregation propensity than globular proteins, this does not necessarily mean that they have a lower potential for amyloidosis.  相似文献   

2.
Intrinsically disordered proteins (IDPs)/regions do not have well‐defined secondary and tertiary structures, however, they are functional and it is critical to gain a deep understanding of their residue packing. The shape distributions methodology, which is usually utilized in pattern recognition, clustering, and classification studies in computer science, may be adopted to study the residue packing of the proteins. In this study, shape distributions of the globular proteins and IDPs were obtained to shed light on the residue packing of their structures. The shape feature that was used is the sphericity of tetrahedra obtained by Delaunay Tessellation of points of Cα coordinates. Then the sphericity probability distributions were compared by using Principal Component Analysis. This computational structural study shows that the set of IDPs constitute a more diverse set than the set of globular proteins in terms of the geometrical properties of their network structures.  相似文献   

3.
Most proteins encoded by the nuclear genome are synthesized in the cytoplasm and fold into precise 3D structures. During synthesis, the nascent polypeptide begins to fold as it traverses the large subunit of the ribosome and is assisted by molecular chaperones in attaining its precise folded/highly ordered state efficiently and in a biologically relevant timescale. Proteins that are misfolded are culled, re-routed, and marked by mechanisms such as ubiquitinylation for degradation ensuring strict quality control (QC). In addition to the highly ordered "globular" proteins, emerging evidence indicates that a large fraction of the proteome also comprises the so-called "Intrinsically Disordered Proteins" (IDPs). IDPs are proteins that lack rigid 3D structures and instead, exist as dynamic ensembles. The dynamic structures in the IDPs have many similarities with "normal" globular proteins such as the native (ordered), and non-native (molten globule, pre-molten globule, and coil-like) states seen during folding of "normal" globular proteins. However, unlike the case of the nascent globular proteins, IDPs evade being detected as "misfolded" and degraded by the cell's QC system. We refer to this paradox as the order/disorder paradox and postulate that the IDPs capitalize on their intrinsic promiscuity and ability to undergo disorder-to-order transitions upon binding to biological targets (coupled folding and binding) to escape the cell's surveillance machinery. Understanding the mechanism by which the IDPs evade the quality check has wide implications from protein folding to disease biology since the aggregation of misfolded proteins underlies several debilitating illnesses such as many neurodegenerative diseases and cancer.  相似文献   

4.
Proteins are dynamic creatures. Intrinsically disordered proteins (IDPs) function as multiplicity of structures and their activities can only be described by stochastic structure-function relationships. In their complex forms, however, IDPs were thought to lose their plasticity and behave similarly to globular proteins. Although various IDPs indeed fold upon binding, this view is not valid in general. IDPs usually interact with their partners via short motifs, which require malleable environments to function. Consequently, segments of IDPs could retain their disordered state in the complex, a phenomenon termed as fuzziness. Since its recognition, the number of structurally characterized fuzzy complexes, both with protein and DNA, rapidly increases. Here I review recent advances in our understanding of fuzziness. Four basic mechanisms are described how conformationally heterogeneous regions impact specificity or binding affinity of protein complexes. A novel allostery-model is proposed, where the regulatory site modulates the conformational equilibrium of the binding interface without adopting a unique structure. Protein-protein interactions, post-translational modifications or alternative splicing of the highly flexible/disordered regions offer further opportunities for regulation and expand the functional repertoire of fuzzy complexes.  相似文献   

5.
Plants as sessile organisms are strongly challenged by environmental stresses. Many plants species are able to cold-acclimate, acquiring higher freezing tolerance upon exposure to low but non-freezing temperatures. Among a plethora of adaptational processes, this involves the accumulation of cold regulated (COR) proteins that are assumed to stabilize and protect cellular structures during freezing. However, their molecular functions are largely unknown. We recently reported a comprehensive study of 2 intrinsically disordered cold regulated chloroplast proteins, COR15A and COR15B from Arabidopsis thaliana. They are necessary for full cold acclimation. During freezing, they stabilize leaf cells through folding and binding to chloroplast membranes. Contrary to evidence from in-vitro experiments, they play no role in enzyme stabilization in vivo. Elucidating these major functional and structural characteristics and estimation of protein abundance allow us to propose a detailed model for the mode of action of the two COR15 proteins.  相似文献   

6.
The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDPs) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions, IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation maps to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and respond differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function-enabling information is encoded in IDPs.  相似文献   

7.
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.  相似文献   

8.
Natively disordered proteins are a growing class of anomalies to the structure-function paradigm. The natively disordered protein alpha-synuclein is the primary component of Lewy bodies, the cellular hallmark of Parkinson's disease. We noticed a dramatic difference in dilute solution 1H-15N Heteronuclear Single Quantum Coherence (HSQC) spectra of wild-type alpha-synuclein and two disease-related mutants (A30P and A53T), with spectra collected at 35 degrees C showing fewer cross-peaks than spectra acquired at 10 degrees C. Here, we show the change to be the result of a reversible conformational exchange linked to an increase in hydrodynamic radius and secondary structure as the temperature is raised. Combined with analytical ultracentrifugation data showing alpha-synuclein to be monomeric at both temperatures, we conclude that the poor quality of the 1H-15N HSQC spectra obtained at 35 degrees C is due to conformational fluctuations that occur on the proton chemical shift time scale. Using a truncated variant of alpha-synuclein, we show the conformational exchange occurs in the first 100 amino acids of the protein. Our data illustrate a key difference between globular and natively disordered proteins. The properties of globular proteins change little with solution conditions until they denature cooperatively, but the properties of natively disordered proteins can vary dramatically with solution conditions.  相似文献   

9.
Intrinsically disordered proteins (IDPs)/protein regions (IDPRs) lack unique three-dimensional structure at the level of secondary and/or tertiary structure and are represented as an ensemble of interchanging conformations. To investigate the role of presence/absence of secondary structures in promoting intrinsic disorder in proteins, a comparative sequence analysis of IDPs, IDPRs and proteins with minimal secondary structures (less than 5%) is required. A sequence analysis reveals proteins with minimal secondary structure content have high mean net positive charge, low mean net hydrophobicity and low sequence complexity. Interestingly, analysis of the relative local electrostatic interactions reveal that an increase in the relative repulsive interactions between amino acids separated by three or four residues lead to either loss of secondary structure or intrinsic disorder. IDPRs show increase in both local negative-negative and positive-positive repulsive interactions. While IDPs show a marked increase in the local negative-negative interactions, proteins with minimal secondary structure depict an increase in the local positive-positive interactions. IDPs and IDPRs are enriched in D, E and Q residues, while proteins with minimal secondary structure are depleted of these residues. Proteins with minimal secondary structures have higher content of G and C, while IDPs and IDPRs are depleted of these residues. These results confirm that proteins with minimal secondary structure have a distinctly different propensity for charge, hydrophobicity, specific amino acids and local electrostatic interactions as compared to IDPs/IDPRs. Thus we conclude that lack of secondary structure may be a necessary but not a sufficient condition for intrinsic disorder in proteins.  相似文献   

10.
11.
As many diseases can be traced back to altered protein function, studying the effect of genetic variations at the level of proteins can provide a clue to understand how changes at the DNA level lead to various diseases. Cellular processes rely not only on proteins with well-defined structure but can also involve intrinsically disordered proteins (IDPs) that exist as highly flexible ensembles of conformations. Disordered proteins are mostly involved in signaling and regulatory processes, and their functional repertoire largely complements that of globular proteins. However, it was also suggested that protein disorder entails an increased biological cost. This notion was supported by a set of individual IDPs involved in various diseases, especially in cancer, and the increased amount of disorder observed among disease-associated proteins. In this work, we tested if there is any biological risk associated with protein disorder at the level of single nucleotide mutations. Specifically, we analyzed the distribution of mutations within ordered and disordered segments. Our results demonstrated that while neutral polymorphisms were more likely to occur within disordered segments, cancer-associated mutations had a preference for ordered regions. Additionally, we proposed an alternative explanation for the association of protein disorder and the involvement in cancer with the consideration of functional annotations. Individual examples also suggested that although disordered segments are fundamental functional elements, their presence is not necessarily accompanied with an increased mutation rate in cancer. The presented study can help to understand how the different structural properties of proteins influence the consequences of genetic mutations.  相似文献   

12.
Intrinsically disordered proteins (IDP) serve as one of the key components in the global proteome. In contrast to globular proteins, they harbor an enormous amount of physical flexibility enforcing them to be retained in conformational ensembles rather than stable folds. Previous studies in an aligned direction have revealed the importance of transient dynamical phenomena like that of salt-bridge formation in IDPs to support their physical flexibility and have further highlighted their functional relevance. For this characteristic flexibility, IDPs remain amenable and accessible to different ordered binding partners, supporting their potential multi-functionality. The current study further addresses this complex structure-functional interplay in IDPs using phase transition dynamics to conceptualize the underlying (avalanche type) mechanism of their being distributed across and hopping around degenerate structural states (conformational ensembles). For this purpose, extensive molecular dynamics simulations have been done and the data analyzed from a statistical physics perspective. Investigation of the plausible scope of 'self-organized criticality' (SOC) to fit into the complex dynamics of IDPs was found to be assertive, relating the conformational degeneracy of these proteins to their functional multiplicity. In accordance with the transient nature of 'salt-bridge dynamics', the study further uses it as a probe to explain the structural basis of the proposed criticality in the conformational phase transition among self-similar groups in IDPs. The analysis reveal scale-invariant self-similar fractal geometries in the structural conformations of different IDPs. The insights from the study has the potential to be extended further to benefit structural tinkering of IDPs in their functional characterization and drugging.  相似文献   

13.
It is recognized now that intrinsically disordered proteins (IDPs), which do not have unique 3D structures as a whole or in noticeable parts, constitute a significant fraction of any given proteome. IDPs are characterized by an astonishing structural and functional diversity that defines their ability to be universal regulators of various cellular pathways. Programmed cell death (PCD) is one of the most intricate cellular processes where the cell uses specialized cellular machinery and intracellular programs to kill itself. This cell-suicide mechanism enables metazoans to control cell numbers and to eliminate cells that threaten the animal''s survival. PCD includes several specific modules, such as apoptosis, autophagy, and programmed necrosis (necroptosis). These modules are not only tightly regulated but also intimately interconnected and are jointly controlled via a complex set of protein–protein interactions. To understand the role of the intrinsic disorder in controlling and regulating the PCD, several large sets of PCD-related proteins across 28 species were analyzed using a wide array of modern bioinformatics tools. This study indicates that the intrinsic disorder phenomenon has to be taken into consideration to generate a complete picture of the interconnected processes, pathways, and modules that determine the essence of the PCD. We demonstrate that proteins involved in regulation and execution of PCD possess substantial amount of intrinsic disorder. We annotate functional roles of disorder across and within apoptosis, autophagy, and necroptosis processes. Disordered regions are shown to be implemented in a number of crucial functions, such as protein–protein interactions, interactions with other partners including nucleic acids and other ligands, are enriched in post-translational modification sites, and are characterized by specific evolutionary patterns. We mapped the disorder into an integrated network of PCD pathways and into the interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathway.  相似文献   

14.
Many biologically active proteins, which are usually called intrinsically disordered or natively unfolded proteins, lack stable tertiary and/or secondary structure under physiological conditions in vitro. Their functions complement the functional repertoire of ordered proteins, with intrinsically disordered proteins (IDPs) often being involved in regulation, signaling and control. Their amino acid sequences and compositions are very different from those of ordered proteins, making reliable identification of IDPs possible at the proteome level. IDPs are highly abundant in various human diseases, including neurodegeneration and other protein dysfunction maladies and, therefore, represent attractive novel drug targets. Some of the aspects of IDPs, as well as their roles in neurodegeneration and protein dysfunction diseases, are discussed in this article, together with the peculiarities of IDPs as potential drug targets.  相似文献   

15.
Globular proteins composed of different secondary structures and fold types were examined by synchrotron radiation circular dichroism spectroscopy to determine the effects of dehydration on their secondary structures. They exhibited only minor changes upon removal of bulk water during film formation, contrary to previously reported studies of proteins dehydrated by lyophilization (where substantial loss of helical structure and gain in sheet structure was detected). This near lack of conformational change observed for globular proteins contrasts with intrinsically disordered proteins (IDPs) dried in the same manner: the IDPs, which have almost completely unordered structures in solution, exhibited increased amounts of regular (mostly helical) secondary structures when dehydrated, suggesting formation of new intra‐protein hydrogen bonds replacing solvent‐protein hydrogen bonds, in a process which may mimic interactions that occur when IDPs bind to partner molecules. This study has thus shown that the secondary structures of globular and intrinsically disordered proteins behave very differently upon dehydration, and that films are a potentially useful format for examining dehydrated soluble proteins and assessing IDPs structures.  相似文献   

16.
17.
Intrinsically disordered/unstructured proteins (IDPs) are extremely sensitive to proteolysis in vitro, but show no enhanced degradation rates in vivo. Their existence and functioning may be explained if IDPs are preferentially associated with chaperones in the cell, which may offer protection against degradation by proteases. To test this inference, we took pairwise interaction data from high-throughput interaction studies and analyzed to see if predicted disorder correlates with the tendency of chaperone binding by proteins. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in E. coli, S. cerevisiae, and metazoa species. Since predicted disorder positively correlates with the tendency of partner binding in the interactome, the difference between the disorder of chaperone-binding and non-binding proteins is even more pronounced if normalized to their overall tendency to be involved in pairwise protein–protein interactions. We argue that chaperone binding is primarily required for folding of globular proteins, as reflected in an increased preference for chaperones of proteins in which at least one Pfam domain exists. In terms of the functional consequences of chaperone binding of mostly disordered proteins, we suggest that its primary reason is not the assistance of folding, but promotion of assembly with partners. In support of this conclusion, we show that IDPs that bind chaperones also tend to bind other proteins.  相似文献   

18.
19.
Szasz CS  Alexa A  Toth K  Rakacs M  Langowski J  Tompa P 《Biochemistry》2011,50(26):5834-5844
Crowding caused by the high concentrations of macromolecules in the living cell changes chemical equilibria, thus promoting aggregation and folding reactions of proteins. The possible magnitude of this effect is particularly important with respect to the physiological structure of intrinsically disordered proteins (IDPs), which are devoid of well-defined three-dimensional structures in vitro. To probe this effect, we have studied the structural state of three IDPs, α-casein, MAP2c, and p21(Cip1), in the presence of the crowding agents Dextran and Ficoll 70 at concentrations up to 40%, and also the small-molecule osmolyte, trimethylamine N-oxide (TMAO), at concentrations up to 3.6 M. The structures of IDPs under highly diluted and crowded conditions were compared by a variety of techniques, fluorescence spectroscopy, acrylamide quenching, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, fluorescence correlation spectroscopy (FCS), and far-UV and near-UV circular dichroism (CD) spectroscopy, which allow us to visualize various levels of structural organization within these proteins. We observed that crowding causes limited structural changes, which seem to reflect the functional requirements of these IDPs. α-Casein, a protein of nutrient function in milk, changes least under crowded conditions. On the other hand, MAP2c and, to a lesser degree, p21(Cip1), which carry out their functions by partner binding and accompanying partially induced folding, show signs of local structuring and also some global compaction upon crowded conditions, in particular in the presence of TMAO. The observations are compatible with the possible preformation of binding-competent conformations in these proteins. The magnitude of these changes, however, is far from that of the cooperative folding transitions elicited by crowding in denatured globular proteins; i.e., these IDPs do remain in a state of rapidly interconverting structural ensemble. Altogether, our results underline that structural disorder is the physiological state of these proteins.  相似文献   

20.
The past decade has witnessed great advances in our understanding of protein structure‐function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non‐native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号