首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
1. Hydroperiod duration has been identified as the main factor determining the faunal composition and structure of aquatic communities in temporary habitats. It is hypothesised that desiccation will positively affect mosquito oviposition habitat selection during the post-drought period due to the lack of antagonists. 2. An experiment was carried out in outdoor mesocosms to assess whether desiccation events have post-drought effects on community richness and mosquito oviposition. Three different treatments were randomly assigned to the mesocosms: (i) eight mesocosms were left dried for a week and then reflooded; (ii) eight mesocosms stayed dry for 4 weeks before they were reflooded; (iii) eight mesocosms were maintained at a constant water volume of 30 litres during the entire experiment as controls. Mosquito oviposition and invertebrate community richness were monitored in every mesocosm, along with environmental parameters [water temperature, pH, conductivity, dissolved oxygen, total suspended solids (TSS) and chlorophyll a concentration]. 3. Post-drought mosquito oviposition and larval abundance were higher in the short-drought and long-drought pools than in the control. Desiccation negatively affected the biomass of the filter feeder invertebrates in both desiccation treatments. Chlorophyll a concentrations were higher in the long-drought pools than in controls. The negative impact of desiccation on zooplankton led to a post-drought increase in algae, associated with an increase in mosquito oviposition. 4. Despite immediate negative effect on mosquitoes, pulsed disturbances can benefit mosquitoes as they favour oviposition during the post-disturbance recovery period due to a lower abundance of mosquito antagonists and higher food resources for their offspring.  相似文献   

2.
Metacommunity theory is a convenient framework in which to investigate how local communities linked by dispersal influence patterns of species distribution and abundance across large spatial scales. For organisms with complex life cycles, such as mosquitoes, different pressures are expected to act on communities due to behavioral and ecological partitioning of life stages. Adult females select habitats for oviposition, and resulting offspring are confined to that habitat until reaching adult stages capable of flight; outside‐container effects (OCE) (i.e., spatial factors) are thus expected to act more strongly on species distributions as a function of adult dispersal capability, which should be limited by geographic distances between sites. However, larval community dynamics within a habitat are influenced by inside‐container effects (ICE), mainly interactions with conspecifics and heterospecifics (e.g., through effects of competition and predation). We used a field experiment in a mainland‐island scenario to assess whether environmental, spatial, and temporal factors influence mosquito prey and predator distributions and abundances across spatial scales: within‐site, between‐site, and mainland‐island. We also evaluated whether predator abundances inside containers play a stronger role in shaping mosquito prey community structure than do OCE (e.g., spatial and environmental factors). Temporal influence was more important for predators than for prey mosquito community structure, and the changes in prey mosquito species composition over time appear to be driven by changes in predator abundances. There was a negligible effect of spatial and environmental factors on mosquito community structure, and temporal effects on mosquito abundances and distributions appear to be driven by changes in abundance of the dominant predator, perhaps because ICE are stronger than OCE due to larval habitat restriction, or because adult dispersal is not limited at the chosen spatial scales.  相似文献   

3.
In freshwater streams, flooding is a typical source of natural disturbance that plays a key role in the dynamics of animal populations and communities. However, habitat degradation and fish stocking might increase the severity of its impact. We tested the effects of a flash flood on the abundance of three size classes of headwater dwelling Alpine bullhead, Cottus poecilopus, in the streams of the Carpathian Mountains in the Czech Republic, that are stocked with hatchery‐reared brown trout, Salmo trutta. We showed that the overall abundance of Alpine bullhead was highest at the sites with the least degraded habitat (i.e., natural habitat) and we caught almost no Alpine bullhead at the sites with the most degraded habitat. The flash flood had a strong negative effect on the abundance of the largest individuals of Alpine bullhead. Abundance of small and medium size Alpine bullhead was negatively affected by the abundance of adult stocked brown trout before as well as after the flash flood. However, negative effect of adult brown trout abundance on abundance of large Alpine bullhead was not significant before the flash flood, and it became significant after the flash flood. This could indicate an accumulation of negative impacts of trout stocking and flash flood on this size class. Overall, our results suggest that stocking of hatchery trout and habitat degradation can reinforce the impact of flash floods on the population of Alpine bullhead in the streams of the Carpathian Mountains.  相似文献   

4.
Mosquito egg traps, aquatic habitats baited with oviposition attractant and insecticide, are important tools for surveillance and control efforts in integrated vector management programs. The bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) is increasingly used as an environmentally friendly alternative to chemical insecticides and the combination of Bti with a simple oviposition attractant like leaf litter to create an effective egg trap seems appealing. However, previous research suggests that Bti may itself alter oviposition, and that leaf litter may dramatically reduce Bti toxicity. Here we present results from field experiment designed to link the effects of litter and Bti on mosquito oviposition habitat selection and post‐colonization survival to production of adult mosquitoes. Tripling litter increased Culex spp. oviposition nearly nine‐fold, while Bti had no effect on oviposition. Neither factor altered egg survival, thus larval abundance reflected the effects of litter on oviposition. Both Bti and litter reduced larval survival by ~60%. We found no evidence that increased litter reduced Bti toxicity. Adult production was dependent upon both litter and Bti. In the absence of Bti, effects of litter on oviposition translated into three‐fold more adults. However, in the presence of Bti, initial increases in oviposition were erased by the combined negative effects of Bti and litter on post‐colonization survival. Thus, our study provides field evidence that combined litter and Bti application creates an effective ovitrap. This combined treatment had the highest oviposition and the lowest survival, and thus removed the greatest number of mosquitoes from the landscape.  相似文献   

5.
Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top‐down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on Culex larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of Culex nigripalpus larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top‐down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density‐dependent manner. These findings help our understanding of the basic larval biology of Culex mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial‐based control methods.  相似文献   

6.
The impact of emergent macrophyte species and crepuscular sprinkler disturbance on mosquito abundance over a 2‐year period was measured in wetland mesocosms. Mosquito oviposition and abundance of immature mosquitoes and aquatic invertebrates were monitored in monotypic plots of small‐stature (height of mature stands <1.5 m) alkali bulrush (Schoenoplectus maritimus) and large‐stature (height of mature stands > 2 m) California bulrush (Schoenoplectus californicus) without or with daily sprinkler showers to deter mosquito egg laying. Relative to wetlands without operational sprinklers, oviposition by culicine mosquitoes was reduced by > 99% and immature mosquito abundance was reduced by > 90% by crepuscular sprinkler applications. Mosquito abundance or distribution in wetlands did not differ between the two bulrush species subjected to the sprinkler treatment. Alkali bulrush wetlands without daily sprinkler treatments contained more egg rafts but significantly fewer mosquito larvae than did California bulrush wetlands. Predaceous damselfly naiads were 3–5 times more abundant in alkali bulrush than in California bulrush. Stem density, rate of spread, and autumnal mortality of alkali bulrush were higher than for California bulrush. Replacement of large emergent macrophytes by smaller species may enhance the efficacy of integrated mosquito management programs to reduce mosquito‐transmitted disease cycles associated with multipurpose constructed wetlands used worldwide for water reclamation and habitat restoration.  相似文献   

7.
Duckweeds, such as Lemna minor Linnaeus (Alismatales: Lemnaceae), are common in aquatic habitats and have been suggested to reduce larval mosquito survivorship via mechanical and chemical effects. Furthermore, pond dyes are used increasingly in aquatic habitats to enhance their aesthetics, although they have been shown to attract mosquito oviposition. The present study examined the coupled effects of L. minor and black pond dye on the oviposition selectivity of Culex pipiens Linnaeus (Diptera: Culicidae) mosquitoes in a series of laboratory choice tests. Subsequently, using outdoor mesocosms, the combined influence of duckweed and pond dye on mosquito abundances in aquatic habitats was quantified. Mosquitoes were strongly attracted to duckweed, and oviposited significantly greater numbers of egg rafts in duckweed-treated water compared with untreated controls, even when the duckweed was ground. The presence of pond dye interacted with the duckweed and further enhanced positive selectivity towards duckweed-treated water. The presence of duckweed caused significant and sustained reductions in larval mosquito numbers, whereas the relative effects of dye were not evident. The use of floating aquatic plants such as duckweed, combined with dye, may help reduce mosquito populations via the establishment of population sinks, characterized by high rates of oviposition coupled with high levels of larval mortality.  相似文献   

8.
B. K. Orr  V. H. Resh 《Oecologia》1992,90(4):474-482
Summary The surface cover produced by aquatic macrophytes is the primary habitat for immature stages (eggs, larvae, and pupae) ofAnopheles mosquitoes. We hypothesized that both the abundance of immatureAnopheles and the recruitment ofAnopheles (from oviposition or larval movement) is positively related to the amount of surface cover present. Field sampling documented a positive correlation betweenAnopheles egg and larval abundance and the amount of vegetative cover present (measured as the number of emergent stems m-2) in monospecific beds ofMyriophyllum aquaticum in a California, USA, wetland. Experiments conducted to determine the influence ofMyriophyllum stem density on selection of oviposition sites by adultAnopheles females clearly indicate that oviposition rate (eggs m-2 d-1) increases as stem density increases from 0 to 1000 stems m-2 but decreases as stem density approaches 2000 stems m-2. In selecting microhabitats,Anopheles larvae preferred patches with high stem densities over patches with few or no plant stems; this preference correlates with differences in habitat quality (e.g., increased refuge from predation and enriched food sources). The optimal habitat for anopheline mosquitoes apparently occurs above a threshold plant density of approximately 500Myriophyllum stems m-2. Habitat heterogeneity produced by variability in the distribution and structure of aquatic vegetation strongly influences the local distribution and abundance of anopheline mosquitoes.  相似文献   

9.

Background

Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae.

Methods

Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour.

Results

The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria.

Conclusion

Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide.  相似文献   

10.
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two‐way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.  相似文献   

11.
Population growth and urbanization have increased the potential habitats, and consequently the abundance of Culex quinquefasciatus, the southern house mosquito, a vector of West Nile Virus in urban areas. Water quality is critical in larval habitat distribution and in providing microbial food resources for larvae. A mesocosm experiment was designed to demonstrate which specific components of water chemistry are conducive to larval Culex mosquitoes. Dose–response relationships between larval development and NO3, NH4, and PO4 concentrations in stream water were developed through this experiment to describe the isolated effects of each nutrient on pre‐adult development. The emergence pattern of Culex mosquitoes was found to be strongly related to certain nutrients, and results showed that breeding sites with higher PO4 or NO3 concentrations had higher larval survival rates. High NO3 concentrations favor the development of male mosquitoes and suppress the development of female mosquitoes, but those adult females that do emerge develop faster in containers with high NO3 levels compared to the reference group. The addition of PO4 in the absence of nitrogen sources to the larval habitat slowed larval development, however, it took fewer days for larvae to reach the pupal stage in containers with combinations of NO3 and PO4 or NH4 and PO4 nutrients. Results from this study may bolster efforts to control WNV in urban landscapes by exploring water quality conditions of Culex larval habitats that produce adult mosquitoes.  相似文献   

12.
Guppies (Poecilia reticulata) are frequently introduced to both natural and artificial water bodies as a mosquito control. Laboratory studies have demonstrated that guppies can consume large numbers of larval mosquitoes. Our study investigates how intraspecific variability in guppy phenotype affects their importance as a mosquito biocontrol and how habitat conditions (natural ponds vs. water storage containers) may influence insect biomass and guppy feeding. Using a blocked experimental design, we established stream‐side mesocosm ponds with half receiving gravel substrate to simulate pond‐bottom habitat. To provide realistic diet choices and insect abundances, we allowed the mesocosms to colonize naturally with aquatic insect larvae for 1 month before introducing guppies. We tested two distinct guppy phenotypes (from high‐ and low‐predation streams) alongside fish‐free controls. After 1 month, we measured insect biomass in the mesocosms and examined guppy gut contents to document direct predation. While overall insect biomass was not significantly different across the three fish treatments, we observed a significant reduction in mosquito biomass in fish treatments compared to fish‐free controls, as well as intraspecific differences in feeding. Overall insect biomass was significantly higher in mesocosms without gravel, while habitat condition had no effect on mosquito biomass. As guppy phenotype responds to changes in their environments, it is an important consideration for biocontrol policy to anticipate potential ecosystem effects. We close by relating our findings to other studies and by discussing the implications and potential risks of using guppies to control mosquitoes.  相似文献   

13.
14.
Summary Wyeomyia smithii mosquitoes distribute their eggs across available oviposition sites (water-holding pitcher plant leaves) of varying quality. I experimentally examined responses to three components of site quality: conspecific larval density, larval density of the pitcher plant midge,Metriocnemus knabi, and pitcher size. Responses to larval treatments were complex and apparently suboptimal. Although mosquito larval performance is better in leaves with fewer conspecific and more midge larvae, females did not lay more eggs in such pitchers. Instead, more eggs were laid in experimental pitchers containing either midge or mosquito larvae, but fewer eggs in pitchers with neither or both. More eggs were laid in larger pitchers, which tend to accumulate more resources and dry out less often. Therefore, although the oviposition decisions made were suboptimal, they were better than random.  相似文献   

15.
Many amphibian populations are in decline worldwide. Surprisingly, few studies have examined how such declines may benefit mosquitoes. Amphibian larvae may compete with and prey upon mosquito larvae, and may alter oviposition habitat selection (OHS) of mosquito adults. However, often overlooked, observed among-pool egg distributions attributed to OHS may additionally or alternatively be explained by egg predation. Temporary pools of mountainous areas of the Mediterranean serve as larval habitat for both the mosquito, Culiseta longiareolata, and the salamander, Salamandra infraimmaculata. We found Culiseta larvae and egg rafts to be highly vulnerable to predation by pre-metamorphosing Salamandra larvae, but not to metamorphosing ones. In outdoor mesocosm experiments, oviposition avoidance by Culiseta females in response to caged Salamandra was not demonstrated regardless of salamander developmental stage. Egg raft abundance was significantly reduced in free-roaming, pre-metamorphosing Salamandra but not by metamorphosing ones. Thus, Salamandra larvae may have little deterrence on Culiseta oviposition. Instead, fewer egg rafts are attributed largely to egg predation. This study highlights the importance of egg raft predation in addition to OHS when interpreting the influence of predators on prey egg distributions. It also highlights that a cost of declining amphibian populations is their reduced impacts on mosquito populations.  相似文献   

16.
Newly established ponds, which are highly dynamic systems with changing levels of biological interactions among species, are common larval mosquito habitats. We investigated the impact of crustacean abundance and taxa diversity on mosquito oviposition and larval development. The effects of the biological larvicide Bacillus thuringiensis israelensis (Bti) on mosquito larvae were monitored according to fluctuations in crustacean communities. Populations of the mosquito Culex pipiens colonized artificial ponds that contained crustacean communities at different time points of colonization by crustaceans: 1) ‘no colonization’ (no crustaceans), 2) ‘simultaneous colonization’ by crustaceans and mosquitoes, and 3) ‘head‐start colonization’ by crustaceans (preceding colonization by mosquitoes). All types of ponds were treated with three concentrations of Bti (10, 100, or 1,000 µg/liter). Colonization of all ponds by Cx. pipiens (in terms of oviposition, larval abundance, and larval development) decreased significantly with increasing diversity of crustacean taxa. The total abundance of crustaceans had a minor effect on colonization by Cx. pipiens. The presence of crustaceans increased the sensitivity of Cx. pipiens larvae to Bti treatment by a factor of 10 and delayed the time of recolonization. This effect of Bti was relevant in the short term. In the long term, the presence of Cx. pipiens was determined by crustacean biodiversity.  相似文献   

17.
Oviposition habitat choices of species with aquatic larvae are expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter-feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposits in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. A. aegypti preferentially oviposited in sites with Toxorhynchites theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding.  相似文献   

18.
We investigated the abundance and taxonomic composition of the aquatic predatory insect fauna, with focus on adult diving beetles (Coleoptera: Dytiscidae), in eight temporary flooded wet meadows and two alder swamps in the River Dalälven floodplains, central Sweden from 2002 to 2006. Diving beetles are generalist predators and often abundant in various waters, including temporary wetlands. In the River Dalälven floodplains, recurrent floods induce massive hatching of flood-water mosquitoes (Diptera: Culicidae), which constitute a superabundant patchy and irregular food resource for aquatic predatory insects. Our aims were (1) to characterize the assemblage of adult diving beetles occurring in the wetlands during floods in relation to time and wetland type and (2) to evaluate the effect on the aquatic predator assemblage of strongly reducing the abundance of a potential prey, flood-water mosquito larvae with Bacillus thuringiensis var. israelensis (Bti) during floods. We found diving beetles to be the dominating aquatic predatory insect taxa in all 10 wetlands. There was a difference in Dytiscidae species richness but not in diversity between wet meadows and alder swamps after rarefaction. The cluster analysis based on dytiscid species and abundances showed very high similarities between the wetlands. The variance component analysis was unable to distinguish any factor that could explain more than 7.4% of the variation in the dytiscid species assemblages. The only effect of Bti-treatment against flood-water mosquito larvae, potential food for the predatory dytiscids, was a slight increase in abundance of the medium-sized dytiscid species. Our results are in accordance with previous studies, suggesting that irregular and recurrent flood dynamic structure the dytiscid fauna more than food limitations and environmental factors.  相似文献   

19.
  • 1 Wetlands harbour high biodiversity and offer important ecosystem services, but they are also a habitat for mosquito larvae (Diptera: Culicidae), which are important disease vectors.
  • 2 Isolation among remnant, or newly created wetlands and ponds, and their consequent density in the landscape, is a key factor that can influence a variety of food web processes, including effects on mosquitoes which are important prey to many predators.
  • 3 We assess the impact of habitat isolation on the density of pond‐breeding mosquitoes (several Anopheles and Culex species) both directly and indirectly through the food web.
  • 4 Results from structural equation modelling of survey data shows that larval mosquitoes are denser in ponds that are more isolated from one another, and that this result was primarily driven indirectly by a reduction of larval mosquito predators (e.g. predaceous insects and amphibians). Furthermore, results from a long‐term mesocosm experiment factorially manipulating isolation and predator reduction show that the effect of isolation on mosquito density was eliminated when predators were experimentally reduced.
  • 5 It is concluded that metacommunity processes, both directly and indirectly mediated through predators, can play an important role in the local abundance of wetland breeding mosquitoes and possibly the diseases they spread.
  相似文献   

20.
Ochlerotatus albifasciatus (Macquart) (Diptera: Culicidae) is the main vector of the western equine encephalomyelitis (WEE) virus and potentially of other arboviruses in Argentina. Surges of adult population abundance during the rainy season are a nuisance, affecting milk and beef production. Larvae develop in short periods in shallow temporary ground pools on fresh or brackish water. Although adults seem to disperse long distances from larval habitats, little is known about their habitat preferences. This work studied factors affecting the spatial pattern of adult Oc. albifasciatus abundance. Adult mosquitoes were collected using CDC miniature light traps baited with CO2 at 28 sites located to the south of Mar Chiquita Lagoon, from November 1997 to April 1998. Each site was typified according to its predominating vegetation cover, potential breeding site occurrence, land slope and cattle density. The spatial and temporal patterns of abundance suggested that Oc. albifasciatus prefers prairies and natural grasslands subject to periodic flooding vs. woodland and farm land. A discriminant function based on the proximity to potential larval habitats, distance to woodland and land slope accurately classified 95% of the data categorized as having an average high (>500 mosquitoes) or low (<500 mosquitoes) abundance, and was validated using six sites located away from the study area. An analysis of the temporal variation of mosquito abundance highlighted the influence of the dynamics of the larval habitats on adult mosquito abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号