首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

2.
Hesson T  Mannarino A  Cable M 《Biochemistry》2000,39(10):2619-2625
The hepatitis C virus (HCV) NS3 protein contains an amino terminal protease (NS3 aa. 1-180) and a carboxyl terminal RNA helicase (NS3 aa. 181-631). NS3 functions as a heterodimer of NS3 and NS4A (NS3/4A). NS3 helicase, a nucleic acid stimulated ATPase, can unwind RNA, DNA, and RNA:DNA duplexes, provided that at least one strand of the duplex contains a single-stranded 3' overhang (this strand of the duplex is referred to as the 3' strand). We have used 2'-O-methyl RNA (MeRNA) substrates to study the mechanism of NS3 helicase activity and to probe the relationship between its helicase and RNA-stimulated ATPase activities. NS3/4A did not unwind double-stranded (ds) MeRNA. NS3/4A unwinds hybrid RNA:MeRNA duplex containing MeRNA as the 5' strand but not hybrid duplex containing MeRNA as the 3' strand. The helicase activity of NS3/4A was 50% inhibited by 40 nM single-stranded (ss) RNA but only 35% inhibited by 320 nM ss MeRNA. Double-stranded RNA was 17 times as effective as double-stranded MeRNA in inhibiting NS3/4A helicase activity, while the apparent affinity of NS3/4A for ds MeRNA differed from ds RNA by only 2.4-fold. However ss MeRNA stimulated NS3/4A ATPase activity similar to ss RNA. These results indicate that the helicase mechanism involves 3' to 5' procession of the NS3 helicase along the 3' strand and only weak association of the enzyme with the displaced 5' strand. Further, our findings show that maximum stimulation of NS3 ATPase activity by ss nucleic acid is not directly related to procession of the helicase along the 3' strand.  相似文献   

3.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

4.
The Escherichia coli dnaB replication protein is a DNA helicase   总被引:55,自引:0,他引:55  
Genetic and biochemical analyses indicate that the Escherichia coli dnaB replication protein functions in the propagation of replication forks in the bacterial chromosome. We have found that the dnaB protein is a DNA helicase that is capable of unwinding extensive stretches of double-stranded DNA. We constructed a partially duplex DNA substrate, containing two preformed forks of single-stranded DNA, which was used to characterize this helicase activity. The dnaB helicase depends on the presence of a hydrolyzable ribonucleoside triphosphate, is maximally stimulated by a combination of E. coli single-stranded DNA-binding protein and E. coli primase, is inhibited by antibody directed against dnaB protein, and is inhibited by prior coating of the single-stranded regions of the helicase substrate with the E. coli single-stranded DNA-binding protein. It was determined that the dnaB protein moves 5' to 3' along single-stranded DNA, apparently in a processive fashion. To invade the duplex portion of the helicase substrate, the dnaB protein requires a 3'-terminal extension of single-stranded DNA in the strand to which it is not bound. Under optimal conditions at 30 degrees C, greater than 1 kilobase pair of duplex DNA can be unwound within 30 s. Based on these findings and other available data, we propose that the dnaB protein is the primary replicative helicase of E. coli and that it actively and processively migrates along the lagging strand template, serving both to unwind the DNA duplex in advance of the leading strand and to potentiate synthesis by the bacterial primase of RNA primers for the nascent (Okazaki) fragments of the lagging strand.  相似文献   

5.
Helicases are enzymes that use energy from nucleoside triphosphate hydrolysis to unwind double-stranded (ds) DNA, a process vital to virtually every phase of DNA metabolism. Helicases have been classified as either 5'-to-3' or 3'-to-5' on the basis of their ability to unwind duplex DNA adjacent to either a 5' or 3' single-stranded (ss) DNA overhang. However, there has been debate as to whether this substrate preference is indicative of unidirectional translocation on ssDNA. We developed an assay that monitors the ability of a helicase to displace streptavidin from biotinylated oligonucleotides [Morris, P. D., and Raney, K. D. (1999) Biochemistry 38, 5164-5171]. Two helicases identified as having 5'-to-3' polarity displaced streptavidin from the 3'-end of biotinylated oligonucleotides but not from the 5'-end. We performed similar experiments using the 3'-to-5' helicases from the hepatitis C virus (NS3) and SV40 virus (SV40 T antigen). NS3 and SV40 T antigen were able to displace streptavidin from a 5'-biotinylated oligonucleotide but not from a 3'-biotinylated oligonucleotide. NS3 and SV40 T antigen enhanced the spontaneous rate of dissociation of streptavidin from biotin 340-fold and 1700-fold, respectively. The ssDNA binding protein, gp32, did not enhance dissociation of streptavidin from either end of an oligonucleotide. For NS3, the rate of displacement was faster from a 5'-biotinylated 60mer than from a 5'-biotinylated 30mer. The strong directional bias in streptavidin displacement activity exhibited by each helicase is consistent with a directional bias in translocation on ssDNA. The dependence of the reaction with NS3 on the oligonucleotide length suggests that multiple NS3 monomers are necessary for optimal activity.  相似文献   

6.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

7.
X Li  C K Tan  A G So  K M Downey 《Biochemistry》1992,31(13):3507-3513
A DNA helicase (delta helicase) which partially copurifies with DNA polymerase delta has been highly purified from fetal calf thymus. delta helicase differs in physical and enzymatic properties from other eukaryotic DNA helicases described thus far. The enzyme has an apparent mass of 57 kDa by gel filtration and is associated with polypeptides of 56 and 52 kDa by SDS-polyacrylamide gel electrophoresis. Photo-cross-linking of the purified enzyme with [alpha-32P]ATP resulted in labeling of a polypeptide of approximately 58 kDa, suggesting that the active site is present on the larger polypeptide. Unwinding of a partial duplex requires a nucleoside triphosphate which can be either ATP or dATP but not a nonhydrolyzable analogue of ATP. Other ribo- and deoxyribonucleoside triphosphates have little or no activity as cofactors. delta helicase also has DNA-dependent ATPase activity which has a relatively low Km for ATP (40 microM). delta helicase binds to single-stranded DNA but has little or no affinity for double-stranded DNA or single-stranded RNA. Similar to replicative DNA helicases from prokaryotes and the herpes simplex virus type 1 helicase-primase, delta helicase translocates in the 5'-3' direction along the strand to which it is bound and preferentially unwinds DNA substrates with a forklike structure.  相似文献   

8.
Characterization of the bacteriophage T4 gene 41 DNA helicase   总被引:5,自引:0,他引:5  
The T4 gene 41 protein and the gene 61 protein function together as a primase-helicase within the seven protein bacteriophage T4 multienzyme complex that replicates duplex DNA in vitro. We have previously shown that the 41 protein is a 5' to 3' helicase that requires a single-stranded region on the 5' side of the duplex to be unwound and is stimulated by the 61 protein (Venkatesan, M., Silver L. L., and Nossal, N. G. (1982) J. biol. Chem. 257, 12426-12434). The 41 protein, in turn, is required for pentamer primer synthesis by the 61 protein. We now show that the 41 protein helicase unwinds a partially duplex DNA molecule containing a performed fork more efficiently than a DNA molecule without a fork. Optimal helicase activity requires greater than 29 nucleotides of single-stranded DNA on the 3' side of the duplex (analogous to the leading strand template). This result suggests the 41 protein helicase interacts with the leading strand template as well as the lagging strand template as it unwinds the duplex region at the replication fork. As the single-stranded DNA on the 3' side of a short duplex (51 base pairs) is lengthened, the stimulation of the 41 protein helicase by the 61 protein is diminished. However, both the 61 protein and a preformed fork are essential for efficient unwinding of longer duplex regions (650 base pairs). These findings suggest that the 61 protein promotes both the initial unwinding of the duplex to form a fork and subsequent unwinding of longer duplexes by the 41 protein. A stable protein-DNA complex, detected by a gel mobility shift of phi X174 single-stranded DNA, requires both the 41 and 61 proteins and a rNTP (preferably rATP or rGTP, the nucleotides with the greatest effect on the helicase activity). In the accompanying paper, we report the altered properties of a proteolytic fragment of the 41 protein helicase and its effect on in vitro DNA synthesis in the T4 multienzyme replication system.  相似文献   

9.
10.
Studies on the replication of the pestivirus bovine viral diarrhea virus (BVDV) were considerably facilitated by the recent discovery of an autonomous subgenomic BVDV RNA replicon (DI9c). DI9c comprises mainly the untranslated regions of the viral genome and the coding region of the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. To assess the significance of the NS3-associated nucleoside triphosphatase/helicase activity during RNA replication and to explore other functional features of NS3, we generated a repertoire of DI9c derivatives bearing in-frame mutations in different parts of the NS3 coding unit. Most alterations resulted in deficient replicons, several of which encoded an NS3 protein with an inhibited protease function. Three lesions permitted replication, though at a lower level than that of the wild-type RNA, i.e., replacement of the third position of the DEYH helicase motif II by either T or F and an insertion of four amino acid residues in the C-terminal part of NS3. While polyprotein proteolysis was found to be almost unaffected in these latter replicons, in vitro studies with the purified mutant NS3 proteins revealed a significantly impaired helicase activity for the motif II substitutions. NS3 with a DEFH motif, moreover, showed a significantly lower ATPase activity. In contrast, the C-terminal insertion had no negative impact on the ATPase/RNA helicase activity of NS3. All three mutations affected the synthesis of both replication products-negative-strand intermediate and progeny positive-strand RNA-in a symmetric manner. Unexpectedly, various attempts to rescue or enhance the replication capability of nonfunctional or less functional DI9c NS3 derivatives, respectively, by providing intact NS3 in trans failed. Our experimental data thus demonstrate that the diverse enzymatic activities of the NS3 protein-in particular the ATPase/RNA helicase-play a pivotal role even during early steps of the viral replication pathway. They may further indicate the C-terminal part of NS3 to be an important functional determinant of the RNA replication process.  相似文献   

11.
A DNA helicase, dependent on the multisubunit human single-stranded DNA binding protein (HSSB), was isolated from HeLa cells. At low levels of helicase, only the multisubunit SSBs, HSSB and yeast SSB, stimulated DNA helicase activity. At high levels of the helicase Escherichia coli SSB partially substituted for HSSB whereas other SSBs such as T4 gene 32 and adenovirus DNA binding protein did not stimulate the enzyme activity. Maximal activation of helicase activity occurred in the presence of one molecule of HSSB for every 20 nucleotides of single-stranded DNA. The addition of E. coli SSB significantly lowered the amount of HSSB required for strand displacement, suggesting that the HSSB plays at least two roles in the activation of the helicase. One is to bind single-stranded DNA, thereby preventing sequestration of the helicase, the other involves the interaction of the HSSB with the helicase. Monoclonal antibodies that interact with the 70- and 34-kDa subunits of HSSB inhibited its stimulation of the helicase activity. The DNA helicase acted catalytically in displacing duplex DNA and translocated in the 3' to 5' direction. The helicase displaced fragments from both ends of a DNA substrate that contained duplex region at both termini, but the 3' to 5' fragment was displaced 20 times faster than the 5' to 3' fragment. Since this helicase also displaced fully duplex DNA, the release of the 5' to 3' fragment may have occurred by entry of the helicase through the duplex end in a 3' to 5' direction.  相似文献   

12.
G Ziegelin  E Scherzinger  R Lurz    E Lanka 《The EMBO journal》1993,12(9):3703-3708
alpha Protein of satellite phage P4 of Escherichia coli is multifunctional in P4 replication with three activities. First, the protein (subunit M(r) = 84,900) complexes specifically the P4 origin and the cis replication region required for replication. alpha Protein interacts with all six type I repeats (TGTTCACC) present in the origin. Second, associated with the alpha protein is a DNA helicase activity that is fueled by hydrolysis of a nucleoside 5' triphosphate. All common NTPs except UTP and dTTP can serve as cofactors. Strand separation of partial duplexes containing tailed ends that resemble a replication fork is preferred, although a preformed fork is not absolutely required for the enzyme to invade and unwind duplex DNA. alpha Protein catalyzes unwinding in the 3'-5' direction with respect to the strand it has bound. Finally, the primase activity already demonstrated for alpha protein is due to synthesis of RNA primers. In vitro, alpha protein generates di- to pentaribonucleotides on single-stranded phage fd DNA. The predominant product is the dimer pppApG, on which most of the longer oligoribonucleotides are based. Using DNA oligonucleotides of defined sequence as templates, synthesis of pppApG was also detectable. To date, among prokaryotic and eukaryotic replication systems, gp alpha is the only protein known that combines three activities on one single polypeptide chain.  相似文献   

13.
The primosome is a mobile multiprotein DNA replication-priming apparatus that requires seven Escherichia coli proteins (replication factor Y (protein n'), proteins n and n", and the products of the dnaB, dnaC, dnaT, and dnaG genes) for assembly at a specific site (termed a primosome assembly site) on single-stranded DNA binding protein-coated single-stranded DNA. Two of the protein components of the primosome have intrinsic DNA helicase activity. The DNA B protein acts in the 5'----3' direction, whereas factor Y acts in the 3'----5' direction. The primosome complex has DNA helicase activity when present at a replication fork in conjunction with the DNA polymerase III holoenzyme. In this report, evidence is presented that the multiprotein primosome per se can act as a DNA helicase in the absence of the DNA polymerase III holoenzyme. The primosome DNA helicase activity can be manifested in either direction along the DNA strand. The directionality of the primosome DNA helicase activity is modulated by the concentration and type of nucleoside triphosphate present in the reaction mixture. This DNA helicase activity requires all the preprimosomal proteins (the primosomal proteins minus the dnaG-encoded primase). Preprimosome complexes must assemble at a primosome assembly site in order to be loaded onto the single-stranded DNA and act subsequently as a DNA helicase. The 5'----3' primosome DNA helicase activity requires a 3' single-stranded tail on the fragment to be displaced, while the 3'----5' activity does not require a 5' single-stranded tail on the fragment to be displaced. Multienzyme preprimosomes moving in either direction are capable of associating with the primase to form complete primosomes that can synthesize RNA primers.  相似文献   

14.
An RNA helicase, isolated from nuclear extracts of HeLa cells, displaced duplex RNA in the presence of any one of the eight common nucleoside triphosphates. The unwinding reaction was supported most efficiently by ATP and GTP and poorly by dCTP and dTTP. The enzyme activity, purified 300-fold, contained two major protein bands of 80 and 55 kDa when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All fractions that contained RNA helicase activity also possessed single-stranded RNA-dependent nucleoside triphosphatase activity. Purified RNA helicase fractions displaced a hybrid of U4/U6 RNAs with the same efficiency as it displaced other duplex RNA structures. In contrast, the RNA helicase did not displace duplex RNA/DNA and DNA/DNA structures. Evidence is presented that suggests that this RNA helicase can displace duplex RNA by translocating in both the 3' to 5' and the 5' to 3' directions. The properties of the RNA helicase described here differ from the deaminase RNA unwinding activity described in Xenopus oocytes (Bass, B.L., and Weintraub, H. (1987) Cell 48, 607-613) and from the p68 HeLa RNA helicase (Hirling, H., Scheffner, M., Restle, T., and Stahl, H. (1989) Nature 339, 562-564).  相似文献   

15.
Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase which catalyzes the unwinding of DNA.DNA duplexes. In the present studies we have demonstrated that the purified enzyme additionally catalyzes the displacement of RNA fragments annealed to complementary DNA. Quantitative comparisons using otherwise identical partially duplex DNA.DNA and DNA.RNA substrates indicate a significant preference for the latter. Competition for ATPase or DNA helicase activity by various homopolymers suggests that Rad3 protein does not discriminate between ribonucleotide and deoxyribonucleotide homopolymers with respect to binding. However, neither single-stranded RNA nor various ribonucleotide homopolymers supported the hydrolysis of nucleoside 5'-triphosphates. Additionally, Rad3 protein was unable to catalyze the displacement of oligo(dA) annealed to poly(U), suggesting that the catalytic domain of the enzyme is exquisitely sensitive to chemical and/or or conformational differences between DNA and RNA. Hence, it appears that Rad3 protein is not an RNA helicase.  相似文献   

16.
Morris PD  Raney KD 《Biochemistry》1999,38(16):5164-5171
Helicases are enzymes that use energy derived from nucleoside triphosphate hydrolysis to unwind double-stranded (ds) DNA, a process vital to virtually every phase of DNA metabolism. The helicases used in this study, gp41 and Dda, are from the bacteriophage T4, an excellent system for studying enzymes that process DNA. gp41 is the replicative helicase and has been shown to form a hexamer in the presence of ATP. In this study, protein cross-linking was performed in the presence of either linear or circular single-stranded (ss) DNA substrates to determine the topology of gp41 binding to ssDNA. Results indicate that the hexamer binds ssDNA by encircling it, in a manner similar to that of other hexameric helicases. A new assay was developed for studying enzymatic activity of gp41 and Dda on single-stranded DNA. The rate of dissociation of streptavidin from various biotinylated oligonucleotides was determined in the presence of helicase by an electrophoretic mobility shift assay. gp41 and Dda were found to significantly enhance the dissociation rate of streptavidin from biotin-labeled oligonucleotides in an ATP-dependent reaction. Helicase-catalyzed dissociation of streptavidin from the 3'-end of a biotin-labeled 62-mer oligonucleotide occurred with a first-order rate of 0.17 min-1, which is over 500-fold faster than the spontaneous dissociation rate of biotin from streptavidin. Dda activity leads to even faster displacement of streptavidin from the 3' end of the 62-mer, with a first-order rate of 7.9 s-1. This is more than a million-fold greater than the spontaneous dissociation rate. There was no enhancement of streptavidin dissociation from the 5'-biotin-labeled oligonucleotide by either helicase. The fact that each helicase was capable of dislodging streptavidin from the 3'-biotin label suggests that these enzymes are capable of imparting a force on a molecule blocking their path. The difference in displacement between the 5' and 3' ends of the oligonucleotide is also consistent with the possibility of a 5'-to-3' directional bias in translocation on ssDNA for each helicase.  相似文献   

17.
A DNA helicase induced by herpes simplex virus type 1.   总被引:18,自引:6,他引:12       下载免费PDF全文
We have identified and partially purified a DNA-dependent ATPase that is present specifically in herpes simplex virus type 1-infected Vero cells. The enzyme which has a molecular weight of approximately 440,000 differs from the comparable host enzyme in its elution from phosphocellulose columns and in its nucleoside triphosphate specificity. The partially purified DNA-dependent ATPase is also a DNA helicase that couples ATP or GTP hydrolysis to the displacement of an oligonucleotide annealed to M13 single-stranded DNA. The enzyme requires a 3' single-stranded tail on the duplex substrate, suggesting that the polarity of unwinding is 5'----3' relative to the M13 DNA. The herpes specific DNA helicase may therefore translocate on the lagging strand in the semidiscontinuous replication of the herpes virus 1 genome.  相似文献   

18.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

19.
Replicative helicases are hexameric enzymes that unwind DNA during chromosomal replication. They use energy from nucleoside triphosphate hydrolysis to translocate along one strand of the duplex DNA and displace the complementary strand. Here, the ability of a replicative helicase from each of the three domains, bacteria, archaea, and eukarya, to unwind RNA-containing substrate was determined. It is shown that all three helicases can unwind DNA-RNA hybrids while translocating along the single-stranded DNA. No unwinding could be observed when the helicases were provided with a single-stranded RNA overhang. Using DNA, RNA, and DNA-RNA chimeric oligonucleotides it was found that whereas the enzymes can bind both DNA and RNA, they could translocate only along DNA and only DNA stimulates the ATPase activity of the enzymes. Recent observations suggest that helicases may interact with enzymes participating in RNA metabolism and that RNA-DNA hybrids may be present on the chromosomes. Thus, the results presented here may suggest a new role for the replicative helicases during chromosomal replication or in other cellular processes.  相似文献   

20.
Hepatitis C virus (HCV) helicase, non-structural protein 3 (NS3), is proposed to aid in HCV genome replication and is considered a target for inhibition of HCV. In order to investigate the substrate requirements for nucleic acid unwinding by NS3, substrates were prepared by annealing a 30mer oligonucleotide to a 15mer. The resulting 15 bp duplex contained a single-stranded DNA overhang of 15 nt referred to as the bound strand. Other substrates were prepared in which the 15mer DNA was replaced by a strand of peptide nucleic acid (PNA). The PNA–DNA substrate was unwound by NS3, but the observed rate of strand separation was at least 25-fold slower than for the equivalent DNA–DNA substrate. Binding of NS3 to the PNA–DNA substrate was similar to the DNA–DNA substrate, due to the fact that NS3 initially binds to the single-stranded overhang, which was identical in each substrate. A PNA–RNA substrate was not unwound by NS3 under similar conditions. In contrast, morpholino–DNA and phosphorothioate–DNA substrates were utilized as efficiently by NS3 as DNA–DNA substrates. These results indicate that the PNA–DNA and PNA–RNA heteroduplexes adopt structures that are unfavorable for unwinding by NS3, suggesting that the unwinding activity of NS3 is sensitive to the structure of the duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号