首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
聚羟基脂肪酸酯(PHA)是一类全生物可降解的高分子聚酯材料.近年来,随着代谢工程和合成生物学等技术的发展,PHA的微生物发酵生产取得了进一步突破.目前PHA的生物制造体系主要分为传统工业生物技术和下一代工业生物技术.本文从下一代工业生物技术体系比较分析出发,简要综述了PHA生物合成过程强化、PHA分离纯化及改性加工等研...  相似文献   

2.
聚羟基脂肪酸酯(PHA)是一类由微生物合成的、生物可再生、生物可降解、具有多种材料学性能的高分子聚合物,在很多领域有着广泛的应用前景。以下从辅酶工程、代谢工程、微氧生产等方面综述了微生物法生产PHA的研究进展,并对利用PHA合成基因提高基因工程菌的代谢潜能进行了讨论。  相似文献   

3.
国际已经找到"吃"塑料并将其直接转变为有机肥料或可降解塑料PHA的细菌——假单胞杆菌。假单胞菌能够将用于制造饮料瓶的低级PET塑料变成一种价格更高的生物可降解塑料——PHA。作者认为可以利用假单胞杆菌中某些菌类通过基因技术处理得到理想菌类。而这种新细菌可以将原来的数百数千年缩短到几个月,大大有利于环境保护和资源的循环利用。  相似文献   

4.
微生物体内积累的聚羟基脂肪酸酯(PHAs)是一种可降解的生物塑料,利用微生物合成绿色环保的PHAs替代石化塑料可减少白色污染。嗜盐菌合成PHA可省略繁琐的灭菌和无菌条件培养的苛刻条件,较其他微生物更具有经济效益和竞争性。结合目前国内外嗜盐菌合成PHA的研究进展,对嗜盐菌合成的PHA进行分类,并对由嗜盐菌合成PHA的影响因素进行总结分析。同时,对嗜盐菌合成PHA的发展前景进行了展望。  相似文献   

5.
利用作物生产生物可降解塑料 多羟基链烷酸酯(PHA)是一类可制造部分或整体可生物降解的塑料制品的化合物,存在于各种细菌中。曾通过细菌发酵进行过商品化生产。通过改变发酵过程中所用的碳源和细菌菌株可生产具有各种特性的PHA聚合物。但人们认为,细菌PHA的生产成本比合成塑料高,由此限制了它在消费产品中的应用程度。如果编码PHA生产的基因能够转移并在作物中表达,则可以百万吨的规模低价合成,与之相比,细菌发酵才以千吨规模生产PHA。 为了探讨在植物中合成PHA的可行性,华盛顿Carnegie研究院的研究人员将两个细菌基因(编码合成100%可降解PHA多羟基丁酸(PHB)的酶)转移到拟南芥中。结果发现,转基因植株液泡、核和胞质中含有少量的PHB,但质体或线粒体中却不含PHB。同时,转基因植株生长缓慢、产籽量降低。但若  相似文献   

6.
合成生物学的迅猛发展使其在各个领域得到了广泛应用,底盘设计、元件组装、代谢网络的从头构建、大片段DNA克隆、多片段DNA拼接等合成生物学技术的开发和利用大大提高了工业生物技术的竞争力.聚羟基脂肪酸酯(PHA)是一种具有生物可降解和生物相容性等优良特性的生物塑料,可以在许多细菌胞内合成,已经被开发应用于多个领域.但是,PHA高昂的生产成本阻碍了其大规模应用.基于合成生物学研究而得到的新方法、新技术可以改变细菌生长模式、生长条件以及细菌形态,从而进一步降低PHA的生产成本.另一方面,通过改造细菌基因组如弱化?-氧化途径可以得到不同种类的重组菌株,用于生产具有不同性能的包括无规共聚物、嵌段共聚物、带有官能团的聚合物等在内的新型多功能PHA材料.合成生物学的应用开创了低成本、高附加值的PHA材料生产的新时代,为PHA的产业化奠定了坚实的基础.  相似文献   

7.
合成生物学作为近年来发展迅速的一门交叉学科,为微生物的生物合成提供了强有力的平台工具。微生物细胞工厂可以合成一系列不同种类的聚羟基脂肪酸酯(PHA),而大肠杆菌作为最常用的底盘,正不断运用合成生物学的策略发掘PHA的多样性并降低成本、提高产量。本文中,笔者综述了大肠杆菌利用合成生物学策略生产生物基材料PHA的研究进展,并对其开发与应用前景进行了展望。  相似文献   

8.
近年来,塑料污染的问题始终困扰着人类社会。为了解决不可回收的塑料带来的环境问题,“降塑再造”的理念被提出。“降塑再造”主要包括塑料的降解和塑料的再生。而再生成为可降解的聚羟基脂肪酸酯(polyhydroxyalkanoates,PHA)则是实现塑料内循环的一种方式。PHA是一种可由多种微生物合成的生物聚酯,以其特有的生物相容性和可降解性以及热加工性能而被大家所关注。同时利用PHA的多样化的单体组成、加工技术和改性方法,可以进一步改善PHA的性能,产生类型多样、性能各异的PHA材料,也可以创造平衡耐久性和生物降解性的新产品,这些特性使PHA有望成为传统塑料的替代品之一。利用极端微生物进行生产的“下一代工业技术(next-generation industrial biotechnology,NGIB)”可以增加PHA的市场竞争力,为国家碳中和目标顺利实施提供参考。本文综述了各类塑料降解并生产PHA的可能性、PHA材料的基础材料属性、加工和改性方法及获得的新材料、新技术和独特的材料性质。  相似文献   

9.
【背景】传统石油基塑料产品给人类和环境带来的危害日益严重,聚羟基脂肪酸酯(polyhydroxyalknoates,PHA)作为新型可降解塑料原料越来越受到青睐。但PHA生产成本过高,使其推广应用严重受限。筛选适合大规模生产PHA的高产菌株是解决这一问题的重要途径。【目的】以挖掘合成PHA的菌种资源为目标,从极端环境筛选和鉴定新的高产PHA合成菌。【方法】通过尼罗蓝平板分离法和PCR法分离纯化菌株,采用16S rRNA基因鉴定并通过MEGA 6.0软件构建系统发育树,分析菌株的进化关系,最后通过尼罗红染色定性分析和气相色谱法定量测定该菌株在不同时期的PHA积累量。【结果】从盐碱地垃圾沉积物中分离得到了一株高产PHA的菌株,PhaC的PCR扩增结果证实了该菌株是PHA合成菌,经16S rRNA基因鉴定为Pseudomonas brassicacearum,将其命名为NP-2,进一步优化了菌株NP-2的培养条件,在培养48h时PHA积累量最大,达到3.78 mg/mL。【结论】NP-2属于Pseudomonas brassicacearum,能高产PHA。本研究为生产PHA提供了极端环境的...  相似文献   

10.
发展生物基降解塑料不仅有利于解决"白色污染"问题,同时对减少碳排放以及削弱对石油资源的依赖有重要意义。从产业化角度出发,综述了合成生物基降解塑料产业链现状,系统介绍了聚乳酸(PLA)、聚羟基脂肪酯酸(PHA)、聚丁二酸丁二醇酯(PBS)及聚对苯二甲酸-己二酸丁二醇酯(PBAT)几种重要的合成生物基降解塑料的产业链现状,分析了合成生物基降解塑料的发展趋势及前景。  相似文献   

11.
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.  相似文献   

12.
The use of biodegradable polymers is one of the key solution to environmental problems and the development of biocompatible material. The impact of such a large commercial opportunity is one of the primary reasons for much interest in the field of microbial polyester, polyhydroxyalkanoic acid (PHA). Its valuable properties of biodegradability, biocompatibility and thermoplasticity have attracted considerable commercial interest, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has been launched as the first market product. Recent advances in molecular genetics and microbial physiology of PHA biosynthesis have been uncovering the biosynthetic mechanics at molecular level, and extensive efforts for the developments of practical applications and cost-effective mass production of PHA will profell the commercialization of PHA towards the commodity market for biodegradable plastics. The biosynthesis of new members of PHA family with new monomer or unusual composition will also lead to the biotechnological production of tailor-made biopolymer for various applications.  相似文献   

13.
Polyhydroxyalkanoates (PHA) are polyesters of bacterial origin that have properties of biodegradable plastics and elastomers. Synthesis of PHA in crop plants would allow the large-scale production and use of these biodegradable and renewable polymers as substitutes for petroleum-derived plastics. Synthesis of a diversity of PHAs in plants, such as Arabidopsis thaliana, rapeseed, corn and cotton, has been demonstrated through the genetic engineering of metabolic pathways in the cytoplasm, plastid and peroxisome. PHA can also be used as a novel tool to study various aspects of plant metabolism, such as the regulation of carbon flux to the fatty acid biosynthetic and degradation pathways.  相似文献   

14.
Applied Microbiology and Biotechnology - Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some...  相似文献   

15.
Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms. PHAs have been attracting considerable attention as biodegradable substitutes for conventional polymers. To reduce their production cost, a great deal of effort has been devoted to developing better bacterial strains and more efficient fermentation/recovery processes. The use of mixed cultures and cheap substrates can reduce the production cost of PHA. Accumulation of PHA by mixed cultures occurs under transient conditions mainly caused by intermittent feeding and variation in the electron donor/acceptor presence. The maximum capacity for PHA storage and the PHA production rate are dependent on the substrate and the operating conditions used. This work reviews the development of PHA research. Aspects discussed include metabolism and various mechanisms for PHA production by mixed cultures; kinetics of PHA accumulation and conversion; effects of carbon source and temperature on PHA production using mixed cultures; PHA production process design; and characteristics of PHA produced by mixed cultures.  相似文献   

17.

Background  

Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4–55 PHA synthase 1 (PhaC1P.sp USM 4–55).  相似文献   

18.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.  相似文献   

19.
Polyhydroxyalkanoates (PHAs) are a family of microbially made polyesters commercialized as biodegradable plastics. PHA production rates are predicted to increase as concerns around environmental plastic contamination and limited fossil fuel resources have increased the importance of biodegradable and bio-based plastic alternatives. Microbially produced PHA depolymerases are the key enzymes mediating PHA biodegradation, but only a few PHA depolymerases have been well-characterized and screens employing metagenomic sequence data are lacking. Here, we used 3078 metagenomes to analyse the distribution of PHA depolymerases in microbial communities from diverse aquatic, terrestrial and waste management systems. We significantly expand the recognized diversity of this protein family by screening 1914 Gb of sequence data and identifying 13 869 putative PHA depolymerases in 1295 metagenomes. Our results indicate that PHA depolymerases are unevenly distributed across environments. We predicted the highest frequency of PHA depolymerases in wastewater systems and the lowest in marine and thermal springs. In tandem, we screened 5290 metagenome-assembled genomes to describe the phylogenetic distribution of PHA depolymerases, which is substantially broader compared with current cultured representatives. The Proteobacteria and Bacteroidota are key lineages encoding PHA depolymerases, but PHA depolymerases were predicted from members of the Bdellovibrionota, Methylomirabilota, Actinobacteriota, Firmicutes, Spirochaetota, Desulfobacterota, Myxococcota and Planctomycetota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号