首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Feng  E Friedlin    G A Marzluf 《Applied microbiology》1994,60(12):4432-4439
Vectors which possess a truncated niaD gene encoding nitrate reductase were developed to allow targeted gene integration during transformation of an niaD mutant Penicillium chrysogenum host. The Penicillium genes pcbC and penAB are immediately adjacent to each other and are divergently transcribed, with an intergenic control region serving as their promoters. Gene fusions were constructed with a reporter gene, uidA, which encodes beta-glucuronidase. The pcbC-penAB intergenic region was fused to the uidA gene in both orientations so that regulated expression of each structural gene could be investigated. These fusion genes were targeted to the chromosomal site of the niaD locus of P. chrysogenum, and their expression was examined under different growth conditions. The expression of each of these penicillin biosynthesis genes was found to be regulated by nitrogen repression, glucose repression, and growth stage control.  相似文献   

2.
A new homologous transformation system for the filamentous fungus Penicillium chrysogenum is described. The system is based on complementation of niaD mutants using the nitrate reductase structural gene (niaD) of P. chrysogenum. Spontaneous niaD mutants were identified after selection for chlorate resistance, in growth tests and subsequent complementation with the niaD gene of Aspergillus oryzae. The P. chrysogenum niaD gene was isolated from a genomic library using the Aspergillus nidulans niaD gene as a probe. After subcloning of the hybridizing fragment, the vector obtained, pPC1-1, was capable of transforming a P. chrysogenum niaD mutant at an average of 40 transformants per micrograms of circular DNA. Southern analysis of genomic DNA from a number of transformants showed that pPC1-1 DNA was integrated predominantly at sites other than the niaD locus. Using hybridization analysis it was shown that the niaD gene of P. chrysogenum is clustered with the nitrite reductase gene (niiA). From analysis of the nucleotide sequences of parts of the niaD and niiA genes of P. chrysogenum and comparison of these sequences with nucleotide sequences of the corresponding A. nidulans genes it was deduced that the P. chrysogenum genes are divergently transcribed.  相似文献   

3.
The nor-1 gene in the filamentous fungus Aspergillus parasiticus encodes a ketoreductase involved in aflatoxin biosynthesis. To study environmental influences on nor-1 expression, we generated plasmid pAPGUSNNB containing a nor-1 promoter-beta-glucuronidase (GUS) (encoded by uidA) reporter fusion with niaD (encodes nitrate reductase) as a selectable marker. niaD transformants of A. parasiticus strain NR-1 (niaD) carried pAPGUSNNB integrated predominantly at the nor-1 or niaD locus. Expression of the native nor-1 and nor-1::GUS reporter was compared in transformants grown under aflatoxin-inducing conditions by Northern and Western analyses and by qualitative and quantitative GUS activity assays. The timing and level of nor-1 promoter function with pAPGUSNNB integrated at nor-1 was similar to that observed for the native nor-1 gene. In contrast, nor-1 promoter activity in pAPGUSNNB and a second nor-1::GUS reporter construct, pBNG3.0, was not detectable when integration occurred at niaD. Because niaD-dependent regulation could account for the absence of expression at niaD, a third chromosomal location was analyzed using pAPGUSNP, which contained nor-1::GUS plus pyrG (encodes OMP decarboxylase) as a selectable marker. GUS expression was detectable only when pAPGUSNP integrated at nor-1 and was not detectable at pyrG, even under growth conditions that required pyrG expression. nor-1::GUS is regulated similarly to the native nor-1 gene when it is integrated at its homologous site within the aflatoxin gene cluster but is not expressed at native nor-1 levels at two locations outside of the aflatoxin gene cluster. We conclude that the GUS reporter system can be used effectively to measure nor-1 promoter activity and that nor-1 is subject to position-dependent regulation in the A. parasiticus chromosome.  相似文献   

4.
5.
6.
The nitrate reductase gene (niaD) is the most frequently utilized as a selectable marker for homologous integration at the niaD locus of Aspergillus oryzae. In this study we developed a method for curing of the niaD-based plasmid integrated on the A. oryzae genome. Positive selection using a modified chlorate medium containing leucine as a nitrogen source enabled efficient isolation of the strains deficient in nitrate assimilation from the niaD(+) transformant. PCR analysis of the strains confirmed that the homologously integrated plasmid carrying the h2b-egfp fusion gene was cured by intrachromosomal recombination which was accompanied by the loss of the EGFP-fluorescence.  相似文献   

7.
8.
9.
本研究以四种不同物种来源,不同代谢途径功能基因的启动子为材料,分别构建了以产黄青霉异青霉素N合成酶(IPNS)基因pcbC的启动子Pipns、构巢曲霉3-磷酸甘油醛脱氢酶基因gpdA的启动子PgpdA、构巢曲霉色氨酸合成基因trpC的启动子PtrpC、粗糙脉胞霉氨基酸合成交叉途径控制基因cpc的启动子Pcpc为启动子,腐草霉素(phleomycin)抗性基因为报告基因,构巢曲霉色氨酸合成基因trpC的终止子TtrpC为终止信号的丝状真菌转基因质粒,建立了产黄青霉工业生产菌种启动子筛选、评价体系,调查了这四种启动子的强弱。结果表明选择性标记基因受强启动子驱动可以提高产黄青霉工业生产菌种的转基因效率。研究也显示这四种启动子的强弱的顺序为PgpdA、Pcpc、Pipns和PtrpC。  相似文献   

10.
A fungal strain, Penicillium sp. AZ, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12-carboxyl-monascorubramine] is that pyranoid oxygen is replaced with nitrogen. In this study, we found that ammonia and nitrate nitrogen are available for PP-V biosynthesis, and that ammonia nitrogen was much more effective than nitrate nitrogen. Further, we isolated nitrate assimilation gene cluster, niaD, niiA, and crnA, and analyzed the expression of these genes. The expression levels of all these genes increased with sodium nitrate addition to the culture medium. The results obtained here strongly suggest that Penicillium sp. AZ produced PP-V using nitrate in the form of ammonium reduced from nitrate through a bioprocess assimilatory reaction.  相似文献   

11.
A paradoxical mutant GATA factor   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

12.
T S Wu  J E Linz 《Applied microbiology》1993,59(9):2998-3002
Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
16.
R J Downey  R J Gagliardi 《Microbios》1991,66(267):107-116
Two strains characterized as niaD structural gene mutants in Aspergillus nidulans produce a nitrate reductase which retains the ability to react with nitrate while lacking the ability to oxidize its naturally occurring substrate NADPH. Fifteen such nitrate reactive niaD strains exhibited strong interallelic complementation when tested against strains bearing point mutations in eleven other loci essential to induction and synthesis of nitrate reductase in Aspergillus. Fourteen representatives of this phenotype formed enzyme with a molecular weight equivalent to that of the wild type (200 kD) and also remained inducible by nitrate and repressible by ammonium. The mutation appears to alter the NADPH binding domain of the nitrate reductase since the affinity for the dinucleotide fold in Affigel blue and the dissociation constant (Ks) for enzyme isolated from the mutants on the basis of reduced methyl viologen-nitrate reductase activity is significantly less than that observed for the native enzyme from the wild type.  相似文献   

17.
18.
19.
Abstract A heterologous transformation system for Aspergillus alliaceus based on the Aspergillus niger nitrate reductase structural gene ( niaD ) has been developed. Two mutants of A. alliaceus (M3 and M17), each carrying an niaD mutation were isolated by screening UV-irradiated cells for the inability to grow on nitrate as sole nitrogen source. Using plasmid pSTA 10, transformation frequencies of 4 and 200 per μg DNA respectively were obtained for these two strains. All the niaD + transformants tested were mitotically stable. Southern hybridisation analyses showed that the vector DNA sequences were present.  相似文献   

20.
An industrial Penicillium chrysogenum strain was transformed using two dominant selection markers, namely the bacterial gene for phleomycin resistance (ble) fused to a fungal promoter, and the acetamidase (amdS) gene from Aspergillus nidulans. Transformation frequencies of up to 20 transformants per microgram of DNA were obtained with the ble system. With the amdS marker the frequency was up to 120 transformants. Cotransformation was very efficient when using amdS as a selection marker. The introduction of pAN5-41B, a plasmid carrying the Escherichia coli lacZ gene fused to the strong glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter from A. nidulans, resulted in the formation of blue colonies on XGal plates indicating expression of the lacZ fusion gene in P. chrysogenum. A more detailed analysis of expression levels in several transformants showed that up to 6% of the total amount of soluble protein consists of the beta-galactosidase fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号