首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aims:  To study lactic acid bacteria (LAB) and yeast dynamics during the production processes of sweet-leavened goods manufactured with type I sourdoughs.
Methods and Results:  Fourteen sourdough and dough samples were taken from a baking company in central Italy during the production lines of three varieties of Panettone. The samples underwent pH measurements and plating analysis on three solid media. The microbial DNA was extracted from both the (sour)doughs and the viable LAB and yeast cells collected in bulk, and subjected to PCR-denaturing gradient gel electrophoresis (DGGE) analysis. The molecular fingerprinting of the cultivable plus noncultivable microbial populations provide evidence of the dominance of Lactobacillus sanfranciscensis , Lactobacillus brevis and Candida humilis in the three fermentation processes. The DGGE profiles of the cultivable communities reveal a bacterial shift in the final stages of two of the production processes, suggesting an effect of technological parameters on the selection of the dough microflora.
Conclusions:  Our findings confirm the importance of using a combined analytical approach to explore microbial communities that develop during the leavening process of sweet-leavened goods.
Significance and Impact of the Study:  In-depth studies of sourdough biodiversity and population dynamics occurring during sourdough fermentation are fundamental for the control of the leavening process and the manufacture of standardized, high-quality products.  相似文献   

2.
From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.  相似文献   

3.
Controlled fermentation of maize was carried out using six strains of Lactobacillus fermentum and one strain of yeast, Saccharomyces cerevisiae, isolated from traditionally fermented maize dough as starter cultures for inoculum enrichement. The fermentations were monitored by pH, acidity, microbiological analysis and taste panel evaluation of two products, kenkey and koko, prepared from the fermented doughs. The strains of L. fermentum used as starter culture dominated the microflora during fermentation and in most inoculated doughs the required pH was attained by 24 h instead of 48 h of dough fermentation. Higher contents of lactic acid bacteria and yeasts were observed in inoculated doughs at the initial stages of fermentation but the spontaneously fermented doughs attained similar lactic acid bacteria and yeasts counts by 24 h of dough fermentation. The organoleptic quality of kenkey and koko prepared from doughs fermented with starter culture for 48 h was not significantly different from the traditional products. Kenkey prepared from doughs fermented for 24 h with starter culture were found to be unacceptable by the taste panel although similarly produced koko was acceptable.The authors are with the Food Research Institute, Council for Scientific and Industrial Research, P.O Box M 20. Accra, Ghana.  相似文献   

4.
Thirty Lactobacillus (L.) plantarum strains, isolated from sourdough, were identified by biochemical tests as well as 16S rDNA sequencing and differentiated on the basis of technological properties, such as amylase, protease, phytase and antirope activities. These properties were shown to be widely differing among the strains, indicating a significant technological diversity. Genetic differentiation was achieved by restriction endonuclease analysis-pulsed field gel electrophoresis (REA-PFGE) that allowed the L. plantarum strains to be divided into 10 different genomic groups. Moreover, 32 different starters were employed in dough making experiments; each starter consisted of a single strain of L. plantarum associated with a maltose positive or a maltose negative yeast. The technological properties of the doughs were greatly influenced by the type of strain included in the starter. The time of leavening and the acidification activities detected in the dough were enhanced by the presence of L. plantarum strains. The bacterial and yeast contents and fermentation properties were statistically treated by principal component analysis (PCA), which allowed the discrimination of different typologies of dough. The study of the peculiar characteristics of different strains of L. plantarum is fundamental for a better understanding of their potential in affecting the nutritional value, quality and stability of the baked goods. L. plantarum strains are able to differentially influence the dough quality when employed as starters.  相似文献   

5.
After isolation from different doughs and sourdoughs, 177 strains of lactic acid bacteria were screened at the phenotypic level for exopolysaccharide production on media containing different carbohydrate sources. Two exopolysaccharide-producing lactic acid bacteria (Lactobacillus curvatus 69B2 and Leuconostoc lactis 95A) were selected through quantitative analysis on solid media containing sucrose and yeast extract. The PCR detection of homopolysaccharide (gtf and lev) and heteropolysaccharide (epsA, epsB, epsD and epsE, and epsEFG) genes showed different distributions within species and strains of the lactic acid bacteria studied. Moreover, in some strains both homopolysaccharide and heteropolysaccharide genes were detected. Proton nuclear magnetic resonance spectra suggest that Lactobacillus curvatus 69B2 and Leuconostoc lactis 95A produced the same exopolysaccharide, which was constituted by a single repeating glucopyranosyl unit linked by an α-(1→6) glycosidic bond in a dextran-type carbohydrate. Microbial growth, acidification, and viscoelastic properties of sourdoughs obtained by exopolysaccharide-producing and nonproducing lactic acid bacterial strains were evaluated. Sourdough obtained after 15 h at 30°C with exopolysaccharide-producing lactic acid bacteria reached higher total titratable acidity as well as elastic and dissipative modulus curves with respect to the starter not producing exopolysaccharide, but they showed similar levels of pH and microbial growth. On increasing the fermentation time, no difference in the viscoelastic properties of exopolysaccharide-producing and nonproducing samples was observed. This study suggests that dextran-producing Leuconostoc lactis 95A and Lactobacillus curvatus 69B2 can be employed to prepare sourdough, and this would be particularly useful to improve the quality of baked goods while avoiding the use of commercially available hydrocolloids as texturizing additives.  相似文献   

6.
Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts.  相似文献   

7.
The sour dough bread making process is extensively used to produce wholesome palatable rye bread. The process is traditionally done using a back-slopping procedure. Traditional sour doughs in Finland comprise of lactic acid bacteria and yeasts. The yeasts present in these doughs have been enriched in the doughs due to their metabolic activities, e.g. acid tolerance. We characterized the yeasts in five major sour bread bakeries in Finland. We found that most of the commercial sour doughs contained yeasts which were similar to Candida milleri on the basis of 18S rDNA and EF-3 PCR-RFLP patterns and metabolic activities. Some of the bakery yeasts exhibited extensive karyotype polymorphism. The minimum growth temperature was 8 degrees C for C. milleri and also for most of sour dough yeasts.  相似文献   

8.
In the last few years the need to produce food with added value has fueled the search for new ingredients and health-promoting compounds. In particular, to improve the quality of bakery products with distinct nutritional properties, the identification of new raw materials, appropriate technologies, and specific microbial strains is necessary. In this study, different doughs were prepared, with 10% and 20% flour from immature wheat grain blended with type “0 America” wheat flour. Immature flour was obtained from durum wheat grains harvested 1 to 2 weeks after anthesis. Doughs were obtained by both the straight-dough and sourdough processes. Two selected exopolysaccharide-producing strains of lactic acid bacteria (LAB), Leuconostoc lactis A95 and Lactobacillus curvatus 69B2, were used as starters. Immature flour contained 2.21 g/100 g (dry weight) of fructo-oligosaccharides. Twenty percent immature flour in dough resulted in a shorter leavening time (4.23 ± 0.03 h) than with the control and dough with 10% immature flour. The total titratable acidity of sourdough with 20% immature flour was higher (12.75 ± 0.15 ml 0.1 N NaOH) than in the control and sourdough with 10% immature wheat flour (9.20 ml 0.1 N NaOH). Molecular analysis showed that all samples contained three LAB species identified as L. lactis, L. curvatus, and Pediococcus acidilactici. A larger amount of exopolysaccharide was found in sourdough obtained with 20% immature flour (5.33 ± 0.032 g/kg), positively influencing the exopolysaccharide content of the bread prepared by the sourdough process (1.70 ± 0.03 g/kg). The addition of 20% immature flour also led to a greater presence of fructo-oligosaccharides in the bread (900 mg/100 g dry weight), which improved its nutritional characteristics. While bread volume decreased as the concentration of immature wheat flour increased, its mechanical characteristics (stress at a strain of 30%) were the same in all samples obtained with different percentages of fructo-oligosaccharides. These data support the use of immature wheat grain flour, and exopolysaccaride-producing lactic acid bacteria in formulating functional prebiotic baked goods whose nutritional value can be suitably improved.  相似文献   

9.
Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.  相似文献   

10.
The plasmid contents of 13 lactic acid bacteria isolated from different types of sour doughs were examined and compared with the plasmid contents of 11 culture collection strains and one commercial pure starter culture for sour doughs. In addition, plasmid analysis was used as a tool to study the stability of a starter culture during sour dough fermentation in a bakery.The tested strains varied in plasmid content from no plasmid up to six plasmids, with molecular weights from 1.5 to 43 MDal. In most cases, the wild-type strains contained a higher number of plasmids than the culture collection strains. The ability of the strains to ferment different carbohydrates was also investigated, but no obvious correlations between the fermentation patterns and the plasmid patterns could be observed. During the fermentation of the bakery sour dough, strains other than the inoculated starter culture gradually became dominant in the microflora. These new strains contained 1–3 plasmids, contrary to the plasmidless starter culture, and they also fermented more carbohydrates than the starter culture.  相似文献   

11.
Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.  相似文献   

12.
The ability of electropositively charged filters to recover yeasts and lactic acid bacteria from a variety of beverages was evaluated. Filtration through 'Zeta plus', grade OSS, filters recovered nearly all of the yeast contaminants from table wines, sherry and port. Recovery of yeasts from cream liqueurs and egg-based beverages was also good but it was not possible to filter drinks containing orange juice, even through filters with nominal pore sizes of 2 to 10 μm. Lactic acid bacteria proved more difficult to recover than yeasts, even though smaller pore-sized filters (1 to 4 μm) were employed. However, a sufficiently high percentage of bacteria were recovered to justify use of these filters for quality assurance. The advantage of concentrating contaminants by using charged filters, and the influence of product composition on the efficiency of microbial adsorption are discussed. The growth of wine-spoiling yeasts and lactic acid bacteria were not inhibited by water- or ethanol-soluble extracts of the filter material.  相似文献   

13.
The ability of electropositively charged filters to recover yeasts and lactic acid bacteria from a variety of beverages was evaluated. Filtration through 'Zeta plus', grade O5S, filters recovered nearly all of the yeast contaminants from table wines, sherry and port. Recovery of yeasts from cream liqueurs and egg-based beverages was also good but it was not possible to filter drinks containing orange juice, even through filters with nominal pore sizes of 2 to 10 micron. Lactic acid bacteria proved more difficult to recover than yeasts, even though smaller pore-sized filters (1 to 4 micron) were employed. However, a sufficiently high percentage of bacteria were recovered to justify use of these filters for quality assurance. The advantage of concentrating contaminants by using charged filters, and the influence of product composition on the efficiency of microbial adsorption are discussed. The growth of wine-spoiling yeasts and lactic acid bacteria were not inhibited by water- or ethanol-soluble extracts of the filter material.  相似文献   

14.
AIMS: The metabolism by bifidobacteria of exopolysaccharide (EPS) produced by Lactobacillus sanfranciscensis was investigated. To evaluate the significance of the EPS produced by Lact. sanfranciscensis during dough fermentation on the overall prebiotic properties of bread, metabolism by bifidobacteria of water-soluble polysaccharides (WSP) from wheat and rye was investigated. METHODS AND RESULTS: Polyglucose and polyfructan contained in WSP from wheat and rye were metabolized by bifidobacteria. In contrast, WSP isolated from fermented doughs were not metabolized by bifidobacteria. The arabioxylan fraction of WSP was metabolized neither by bifidobacteria nor by lactobacilli. All the bifidobacteria tested were able to metabolize fructan from Lact. sanfranciscensis. The kinetics of EPS metabolism by various bifidobacteria were characterized by diauxic utilization of fructose and EPS. CONCLUSIONS: Bifidobacteria metabolize fructan from Lact. sanfranciscensis. Polyfructan and the starch fractions from wheat and rye, which possess a bifidogenic effect, were degraded by cereal enzymes during dough fermentation, while the EPS were retained. SIGNIFICANCE AND IMPACT OF THE STUDY: EPS produced by sourdough lactic acid bacteria will improve the nutritional properties of sourdough fermented products.  相似文献   

15.
The aim of this study was to assess the interactions between Saccharomyces cerevisiae and lactic acid bacteria that either form a stable consortium in Greek wheat sourdoughs (i.e. Lactobacillus sanfranciscensis and L. brevis) or occasionally constitute the secondary microbiota (i.e. Weissella cibaria, L. paralimentarius, Pediococcus pentosaceus and Enterococcus faecium). For this purpose, wheat dough was prepared by using strains of the above mentioned species either as single starters, or in combination of the yeast with each of the lactic acid bacteria strains. The determination of the metabolic products in sourdough samples was performed by HPLC analysis. Presence of lactic acid bacteria had no effect on S. cerevisiae final cell yield but affected negatively the maximum specific growth rate. Ethanol production was primarily affected negatively while the co-culture had a variable effect on glycerol production. On the other hand, the presence of S. cerevisiae favoured mannitol and acetic acid production, had a species-dependent effect on maximum specific growth rate and had no effect on final cfu/g sourdough and lactic acid production by the lactic acid bacteria and at the same time caused the depletion of glucose, fructose and maltose.  相似文献   

16.
A total of 241 lactic acid bacteria belonging to Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus fermentum/reuteri and Lactobacillus brevis from various processing stages of maize dough fermentation were investigated. Results indicated that each processing stage has its own microenvironment with strong antimicrobial activity. About half of the Lact. plantarum and practically all of the Lact. fermentum/reuteri investigated were shown to inhibit other Gram-positive and Gram-negative bacteria, explaining the elimination of these organisms during the initial processing stages. Further, widespread microbial interactions amounting to 85% to 18% of all combinations tested were demonstrated amongst lactic acid bacteria within the various processing stages, i.e. raw material, steeping, 0 h and 48 h of fermentation, explaining the microbial succession taking place amongst lactic acid bacteria during fermentation. The antimicrobial effect was explained by the combined effect of acids, compounds sensitive to proteolytic enzymes and other compounds with antimicrobial activity with the acid production being the most important factor.
The pattern of antimicrobial factors was not species-specific and the safety and storage stability of fermented maize seem to depend on a mixed population of lactic acid bacteria with different types of antimicrobial characteristics. This means that introduction of pure cultures as starters may impose a risk to the product.  相似文献   

17.
Twenty-seven properties considered to be required for good bakery products were examined in 56 industrial and 2 laboratory yeast strains. The data obtained were applied to principal-component analysis, one of the multivariate statistical analyses. The first and second principal components together were extracted, and these accounted for 77.7% of the variance. The first principal component was interpreted as the glycolytic activity of yeast in dough, and the second one was interpreted as the balance of leavening abilities in sweet and flour doughs from the factor loadings. The scattergram on the two principal components was effective in grouping the 58 yeast strains used.  相似文献   

18.
Twenty-seven properties considered to be required for good bakery products were examined in 56 industrial and 2 laboratory yeast strains. The data obtained were applied to principal-component analysis, one of the multivariate statistical analyses. The first and second principal components together were extracted, and these accounted for 77.7% of the variance. The first principal component was interpreted as the glycolytic activity of yeast in dough, and the second one was interpreted as the balance of leavening abilities in sweet and flour doughs from the factor loadings. The scattergram on the two principal components was effective in grouping the 58 yeast strains used.  相似文献   

19.
Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.  相似文献   

20.
A note on the leavening activity of yeasts isolated from Nigerian palm wine   总被引:1,自引:1,他引:0  
The role of the yeast flora of Nigerian palm wine in the leavening activity of the beverage was investigated by subjecting organisms from the wine to dough-raising tests. Those with appreciable leavening activity were identified as Saccharomyces cerevisiae and Candida spp. They produced maximum dough volumes in 3–4 h at 37°C. The study has provided experimental evidence that yeasts contribute to the leavening activity of palm wine and has identified strains which have potential utility in commercial bread baking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号