首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
啮齿动物分子系统地理学研究进展   总被引:2,自引:1,他引:1  
系统地理学是研究种间及种内不同种群的形成、现有分布格局的历史原因和演化过程的一门学科。基于分子水平,能够更准确地界定物种分布格局,促进分子系统地理学的形成和发展。近年来,分子系统地理研究的开展,促进了对啮齿动物物种分布格局形成机制的理解。对啮齿动物的种内及种上分类阶元的系统演化关系、起源中心与演化历程、影响系统地理格局的因素、鼠害防控和保护生物学等分子系统地理学方面的研究进行了综述。并提出了啮齿动物分子系统地理学未来发展的四点展望:1)综合性系统地理学研究;2)区域系统地理学研究;3)物种演化的全面系统研究;4)新型分子标记和分析方法的发展。  相似文献   

2.
本文简要回顾了我国西北干旱区植物区系地理的研究历史,其中植物区系和科属地理两方面的研究大多集中在1980年代以后。西北干旱区作为中亚干旱区的东部,今后应该拓展到西部的前苏联中亚五国,在一个自然地理区域的基础上开展区系地理研究才有更广泛的意义。分子系统发育和生物地理研究对区系地理研究有重要意义和潜力。对区系和植被中的关键类群,只有进行深入的分子生物地理学研究,才能使区系地理研究向纵深发展。类群的研究,也应该联系青藏高原隆升和古地中海西退等历史和地质事件,因为它们是中亚干旱的非生物的历史成因。  相似文献   

3.
植物分子系统地理学及其研究进展   总被引:2,自引:1,他引:1  
系统地理学这个概念框架来源于早期对线粒体DNA(mitochondrial DNA,mtDNA)的研究。随着系统地理学研究方法的不断拓展和分子生物学实验技术的渗透,出出了一门新的交叉学科——分子系统地理学(Mokcular phylogeography)。本文简述了分子系统地理学的发展简史和植物分子系统地理学研究常用的分子标记,回顾了近年来植物分子系统地理学方面的研究进展以及存植物研究中的应用。并对植物分子系统地理学研究进行了展望。  相似文献   

4.
于黎  张亚平 《动物学研究》2006,27(6):657-665
追溯生物界不同生物类型的起源及进化关系,即重建生物类群的系统发育树是进化生物学领域中一个十分重要的内容。食肉目哺乳动物位于食物链顶端,很多成员不仅在我国野生动物保护工作中占有重要地位,而且还是研究动物适应性进化遗传机制的重要模式生物。因而,食肉目物种作为物种资源中的一个重要类群,其系统发育学一直是国内外研究的热门课题。构建可靠的食肉目分子系统树,无疑将具有重要的进化理论意义和保护生物学价值。鉴于目前食肉目各科间系统发育关系仍然处于“广泛争论”的状态,本文将针对食肉目科水平上的系统发育学研究进展,包括来自于形态学特征、细胞学及分子生物学方面的证据,做简要概述,并提出目前研究中存在的问题。这对今后食肉目系统发育方面的进一步研究工作具有指导意义,并为以该类群作为模式生物开展适应性进化研究奠定基础。  相似文献   

5.
DNA在鸟类分子系统发育研究中的应用   总被引:1,自引:0,他引:1  
马玉堃  牛黎明  国会艳 《遗传》2006,28(1):97-104
鸟类分子系统发育研究中常用的DNA技术有DNA杂交、RFLP和DNA序列分析等。DNA杂交技术曾在鸟类中有过大规模的应用,并由此诞生了一套新的鸟类分类系统。在鸟类的RFLP分析中,用的最多的靶序列是线粒体DNA。DNA序列分析技术被认为是进行分子系统发育研究最有效、最可靠的方法。在DNA序列分析中,线粒体基因应用最广泛,但由于其自身的一些不足,近年来,不少学者把目光投向了核基因,将线粒体基因和核基因结合起来进行系统发育研究。目前在鸟类分子系统发育中,应用较多的核基因是scnDNA,其内含子可以用于中等阶元水平的系统研究,而外显子主要用于高等阶元的系统研究。除了分子标记自身的问题之外,鸟类分子系统发育研究中还存在着方法上的问题,包括分子标记的选择,样本数量以及数据处理等。今后鸟类分子系统发育研究应该更加注重方法的标准化。  相似文献   

6.
在东北亚地区(中国的东北地区和内蒙古东北部、日本、朝鲜半岛、蒙古国、俄罗斯的远东地区)具有较为丰富的鼩鼱科类群。分子生物学方法的快速发展,使东北亚地区鼩鼱科动物分子生态学研究不断深入。对鼩鼱科动物的分子系统发育、遗传多样性和分子系统地理学等分子生态学内容进行了综述。提出鼩鼱科动物分子生态学研究未来的发展:1)东北亚地区第四纪冰期避难所的研究;2)同域分布的鼩鼱科动物比较系统地理学研究;3)中国东北地区鼩鼱科动物在东北亚分布区的系统地理学地位;4)新型分子标记和分析方法的发展。  相似文献   

7.
本文回顾总结了中国鸟类生物地理学的产生、发展、重要成果和未来的发展趋势。主要论述了以下五个方面:1.中国动物地理学简史及鸟类生物地理学的萌芽;2.鸟类动物地理区划的发展,并重点论述了岛屿鸟类区系调查与生物地理格局、中国台湾岛和海南岛与大陆鸟类区系的联系以及鸟类特有化现象;3.鸟类多样性的格局、形成与维持,并重点归纳了几种重要的科学假说;4.鸟类的谱系生物地理格局、形成原因及影响因素;5.鸟类生物地理学研究的新进展和未来发展趋势,重点阐述谱系生物地理学的发展、"地理格局-适应-基因"的整合分析方法对中国鸟类多样性格局形成机制的深度解析,指出大数据和组学时代是中国乃至世界鸟类生物地理学的发展趋势。  相似文献   

8.
于黎  张亚平 《动物学研究》2006,27(6):657-665
追溯生物界不同生物类型的起源及进化关系,即重建生物类群的系统发育树是进化生物学领域中一个十分重要的内容。食肉目哺乳动物位于食物链顶端,很多成员不仅在我国野生动物保护工作中占有重要地位,而且还是研究动物适应性进化遗传机制的重要模式生物。因而,食肉目物种作为物种资源中的一个重要类群,其系统发育学一直是国内外研究的热门课题。构建可靠的食肉目分子系统树,无疑将具有重要的进化理论意义和保护生物学价值。鉴于目前食肉目各科间系统发育关系仍然处于“广泛争论”的状态,本文将针对食肉目科水平上的系统发育学研究进展,包括来自于形态学特征、细胞学及分子生物学方面的证据,做简要概述,并提出目前研究中存在的问题。这对今后食肉目系统发育方面的进一步研究工作具有指导意义,并为以该类群作为模式生物开展适应性进化研究奠定基础。  相似文献   

9.
生命之树的概念由达尔文在1859年提出,用以反映分类群的亲缘关系和进化历史。近30年来,随着建树性状种类的多样化、数据量的快速增长以及建树方法的不断发展和完善,生命之树的规模越来越大,可信度也越来越高。分子生物学、生态学、基因组学、生物信息学及计算机科学等的快速发展,使得生命之树成为开展学科间交叉研究的桥梁,其用途日益广泛。本文综述了生命之树研究的历史和现状,介绍了生命之树在以下几个方面的应用:(1)通过构建不同尺度的生命之树,理解生物类群间的系统发育关系;(2)通过时间估算和地理分布区重建,推测现存生物的起源和地理分布格局及其成因;(3)基于时间树,结合生态、环境因子及关键创新性状,探讨生物的多样化进程和成因;(4)揭示生物多样性的来源和格局,预测生物多样性动态变化,并提出相应的保护策略。最后,本文评估了生命之树在目前海量数据情况下遇到的序列比对困难、基因树冲突、"流浪类群"干扰等建树难题,并指出了构建"超大树"的发展趋势。  相似文献   

10.
谱系地理学研究旨在探究历史上发生的影响目前遗传谱系系统发育和空间分布格局关系的生态与进化过程。叶绿体DNA具有单亲遗传、低突变率、单倍体等特征, 其分子标记不同程度地保留着植物长期进化的历史遗传痕迹, 有助于深度解析谱系地理变异的形成机制。本文探讨了上述特征是怎样影响分子标记的选择、扩大或缩小群体遗传结构分化、延长或缩短空间基因溯祖时间、促进或阻碍种间基因渐渗及谱系分选(复系、并系和单系形成)进程, 重点阐述了这些影响过程的理论基础, 并结合实际例子阐述谱系地理研究进展。由于位点间在突变率、选择强度及它们与漂变互作等方面存在异质性, 今后一个研究重点就是基于叶绿体全基因组序列分析谱系地理变化格局, 包括分析DNA位点间的基因渐渗或基因流动程度差异分布及沿着叶绿体DNA序列上谱系分选差异分布。  相似文献   

11.
In this review we discuss the use of non-coding DNA at the intraspecific level in plants. Both nuclear and organelle non-coding regions are widely used in interspecific phylogenetic approaches. However, they are also valuable in analyses on the intraspecific level. Besides taxonomy, that is, defining subspecies or varieties, large fields for the application of non-coding DNA are population genetic and phylogeographic studies. Population genetics tries to explain the genetic patterns within species mostly by the amount of extant gene flow among populations, while phylogeography explicitly tries to reconstruct historic events. Depending on the study different molecular markers can be used, varying between very fast evolving microsatellites or some more slowly changing regions like intergenic spacers and introns. Here, we focus mainly on the use of non-coding regions in phylogeographic analyses. Mostly used in this context are regions of the genomes of the chloroplasts and mitochondria. In phylogeography, the correct estimation of allele or haplotype relationships is particularly important. As tree-based methods are mostly insufficient to depict relationships within species, network approaches are better suitable to infer gene or locus genealogies. Problematic for phylogeographic studies are alleles shared among multiple species, which could result from either hybridization or incomplete lineage sorting. Especially the latter can severely influence the interpretation of the phylogeographic patterns. Therefore, it seems necessary for us to also include close relatives of the species under study in phylogeographic analyses. Not only the sample design but also the analysis methods are currently changing, as some new methods such as statistical phylogeography were emerging recently and widely used methods like nested clade analysis might not be reliable in every case. During the last few years, a multitude of studies were published, which mainly analyzed phylogeographic patterns in European and North American plants. Phylogeographic studies in other regions of the earth are still comparably rare, although questions like the influence of the ice age on the vegetation in the tropics or southern hemisphere are still open and phylogeography provides an excellent remedy to answer them.  相似文献   

12.
Phylogeography has become a powerful approach for elucidating contemporary geographical patterns of evolutionary subdivision within species and species complexes. A recent extension of this approach is the comparison of phylogeographic patterns of multiple co-distributed taxonomic groups, or 'comparative phylogeography.' Recent comparative phylogeographic studies have revealed pervasive and previously unrecognized biogeographic patterns which suggest that vicariance has played a more important role in the historical development of modern biotic assemblages than current taxonomy would indicate. Despite the utility of comparative phylogeography for uncovering such 'cryptic vicariance', this approach has yet to be embraced by some researchers as a valuable complement to other approaches to historical biogeography. We address here some of the common misconceptions surrounding comparative phylogeography, provide an example of this approach based on the boreal mammal fauna of North America, and argue that together with other approaches, comparative phylogeography can contribute importantly to our understanding of the relationship between earth history and biotic diversification.  相似文献   

13.
Comparative phylogeography has emerged as a means of understanding the spatial patterns of genetic divergence of codistributed species. However, researchers are often frustrated because of the lack of appropriate statistical tests to assess concordancy of multiple phylogeographic trees. We develop a method for testing congruence across multiple species and synthesizing the data into a regional supertree. Nine phylogeographic data sets of species with different life histories and ecologies were statistically compared using maximum agreement subtrees (MAST) and showed a high degree of concordancy. A supertree combining the different phylogeographic trees was then computed using matrix representation with parsimony, and the groups defined by this supertree were tested against climatic data to investigate a potential mechanism driving divergence. Our data suggest that species and genetic lineages in California are shaped by climatic regimes. The supertree method in combination with MAST represents a new approach to test congruence hypotheses and detect common geographic signals in comparative phylogeography.  相似文献   

14.
Historical biogeography and comparative phylogeography havemuch in common. Both seek to discover common historical patternsin the elements of biotas, although typically at different tiersof evolutionary history. Comparative phylogeography is basedon phylogeographic analyses of multiple taxa, usually widespreadspecies. By comparing the phylogeographic structures of numerouswidespread sympatric species, one can infer whether the currentfauna has been historically stable, as evidenced by the relativefrequency of geographically congruent reciprocally monophyleticgroups. Alternatively, if species distributions are ephemeralover evolutionary time, a mixture of phylogeographic structuresis expected. Coalescence analyses contribute information abouthistory irrespective of whether haplotype phylogenies are structuredor not. In the aridlands of North America, several isolatingevents are evident in the phylogeographic patterns of birds,mammals and herps. A mid-peninsular seaway in Baja California,dated at ca. one million years before present, had a pervasiveeffect, with 13 of 16 assayed species showing a concordant split.Hence, this community appears to have been a stable assemblageof species over the past one million years. In contrast, theavifauna of the Sonoran-Chihuahuan deserts consists of two specieswith a concordant split and three other species that are undifferentiatedacross both deserts. Hence, the species in this area have haddifferent histories. The Baja biota appears to resemble itsancestral configuration to a greater degree than the Sonoran-Chihuahuanone. A deeper evolutionary event separated taxa in Baja Californiafrom the eastern deserts, showing that the aridlands fauna wasaffected by events at different times resulting in overlaintiers of history.  相似文献   

15.
A number of studies now point to the association of patterns of phylogeography with discontinuities in coastal current patterns. If such phylogeographic patterns are indicative of populations that retain local diversity, as has been predicted by recent modelling, such results may be of use in marine reserve planning. Here we show that there is a distributional correlation on the Pacific coast of North America between marine reserve placement and phylogeographic patterns. A number of factors could contribute to this correlation, but its existence suggests the utility of genetic studies in marine conservation planning.  相似文献   

16.
Although mitochondrial DNA (mtDNA) has long been used for assessing genetic variation within and between populations, its workhorse role in phylogeography has been criticized owing to its single-locus nature. The only choice for testing mtDNA results is to survey nuclear loci, which brings into contrast the difference in locus effective size and coalescence times. Thus, it remains unclear how erroneous mtDNA-based estimates of species history might be, especially for evolutionary events in the recent past. To test the robustness of mtDNA and nuclear sequences in phylogeography, we provide one of the largest paired comparisons of summary statistics and demographic parameters estimated from mitochondrial, five Z-linked and 10 autosomal genes of 30 avian species co-distributed in the Caucasus and Europe. The results suggest that mtDNA is robust in estimating inter-population divergence but not in intra-population diversity, which is sensitive to population size change. Here, we provide empirical evidence showing that mtDNA was more likely to detect population divergence than any other single locus owing to its smaller Ne and thus faster coalescent time. Therefore, at least in birds, numerous studies that have based their inferences of phylogeographic patterns solely on mtDNA should not be readily dismissed.  相似文献   

17.
Phylogeography is an integrative field of science linking micro- and macro-evolutionary processes, contributing to the inference of vicariance, dispersal, speciation, and other population-level processes. Phylogeographic surveys usually require considerable effort and time to obtain numerous samples from many geographical sites covering the distribution range of target species; this associated high cost limits their application. Recently, environmental DNA (eDNA) analysis has been useful not only for detecting species but also for assessing genetic diversity; hence, there has been growing interest in its application to phylogeography. As the first step of eDNA-based phylogeography, we examined (1) data screening procedures suitable for phylogeography and (2) whether the results obtained from eDNA analysis accurately reflect known phylogeographic patterns. For these purposes, we performed quantitative eDNA metabarcoding using group-specific primer sets in five freshwater fish species belonging to two taxonomic groups from a total of 94 water samples collected from western Japan. As a result, three-step data screening based on the DNA copy number of each haplotype detected successfully eliminated suspected false positive haplotypes. Furthermore, eDNA analysis could almost perfectly reconstruct the phylogenetic and phylogeographic patterns obtained for all target species with the conventional method. Despite existing limitations and future challenges, eDNA-based phylogeography can significantly reduce survey time and effort and is applicable for simultaneous analysis of multiple species in single water samples. eDNA-based phylogeography has the potential to revolutionize phylogeography.  相似文献   

18.
Comparative phylogeography of Nearctic and Palearctic fishes   总被引:24,自引:2,他引:22  
Combining phylogeographic data from mitochondrial DNA (mtDNA) of Nearctic and Palearctic freshwater and anadromous fishes, we used a comparative approach to assess the influence of historical events on evolutionary patterns and processes in regional fish faunas. Specifically, we (i) determined whether regional faunas differentially affected by Pleistocene glaciations show predictable differences in phylogeographic patterns; (ii) evaluated how processes of divergence and speciation have been influenced by such differential responses; and (iii) assessed the general contribution of phylogeographic studies to conservation issues. Comparisons among case studies revealed fundamental differences in phylogeographic patterns among regional faunas. Tree topologies were typically deeper for species from nonglaciated regions compared to northern species, whereas species with partially glaciated ranges were intermediate in their characteristics. Phylogeographic patterns were strikingly similar among southern species, whereas species in glaciated areas showed reduced concordance. The extent and locations of secondary contact among mtDNA lineages varied greatly among northern species, resulting in reduced intraspecific concordance of genetic markers for some northern species. Regression analysis of phylogeographic data for 42 species revealed significant latitudinal shifts in intraspecific genetic diversity. Both relative nucleotide diversity and estimates of evolutionary effective population size showed significant breakpoints matching the median latitude for the southern limit of the Pleistocene glaciations. Similarly, analysis of clade depth of phylogenetically distinct lineages vs. area occupied showed that evolutionary dispersal rates of species from glaciated and nonglaciated regions differed by two orders of magnitude. A negative relationship was also found between sequence divergence among sister species as a function of their median distributional latitude, indicating that recent bursts of speciation events have occurred in deglaciated habitats. Phylogeographic evidence for parallel evolution of sympatric northern species pairs in postglacial times suggested that differentiation of cospecific morphotypes may be driven by ecological release. Altogether, these results demonstrate that comparative phylogeography can be used to evaluate not only phylogeographic patterns but also evolutionary processes. As well as having significant implications for conservation programs, this approach enables new avenues of research for examining the regional, historical, and ecological factors involved in shaping intraspecific genetic diversity.  相似文献   

19.
Lizards have been model organisms for ecological and evolutionary studies from individual to community levels at multiple spatial and temporal scales. Here we highlight lizards as models for phylogeographic studies, review the published population genetics/phylogeography literature to summarize general patterns and trends and describe some studies that have contributed to conceptual advances. Our review includes 426 references and 452 case studies: this literature reflects a general trend of exponential growth associated with the theoretical and empirical expansions of the discipline. We describe recent lizard studies that have contributed to advances in understanding of several aspects of phylogeography, emphasize some linkages between phylogeography and speciation and suggest ways to expand phylogeographic studies to test alternative pattern‐based modes of speciation. Allopatric speciation patterns can be tested by phylogeographic approaches if these are designed to discriminate among four alternatives based on the role of selection in driving divergence between populations, including: (i) passive divergence by genetic drift; (ii) adaptive divergence by natural selection (niche conservatism or ecological speciation); and (iii) socially‐mediated speciation. Here we propose an expanded approach to compare patterns of variation in phylogeographic data sets that, when coupled with morphological and environmental data, can be used to to discriminate among these alternative speciation patterns. [Correction made after online publication (28/07/2010): (minor deletion in the last line of the abstract)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号