首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterize the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterized extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSC s exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.Key words: genomic imprinting, embryonic stem cells, mesenchymal stem cells, differentiation, methylation, epigenetic stability  相似文献   

2.
《Epigenetics》2013,8(1):52-62
Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterise the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterised extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSCs exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.  相似文献   

3.
Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.  相似文献   

4.
猪的GBP1,GBP2基因是重要的抗病候选基因,建立其高表达细胞模型可为深入研究基因的抗病能力及机理提供良好的素材。利用pEGFP载体上的Neor抗性筛选标记,采用G418药物筛选方法,结合利用GFP荧光标记,采用流式细胞分选技术,获得了超表达猪GBP1和GBP2基因的PK-15细胞,并通过定量PCR方法对筛选后细胞的超表达效果进行验证。结果显示猪GBP1和GBP2基因在转录水平的表达量相对于正常的PK-15细胞分别升高了近40倍和60倍,表明药物筛选结合流式分选是获得目的基因稳定高表达细胞株的快速便捷的方法。  相似文献   

5.
6.
DNA Methylation and Epigenotypes   总被引:6,自引:0,他引:6  
The science of epigenetics is the study of all those mechanisms that control the unfolding of the genetic program for development and determine the phenotypes of differentiated cells. The pattern of gene expression in each of these cells is called the epigenotype. The best known and most thoroughly studied epigenetic mechanism is DNA methylation, which provides a basis both for the switching of gene activities, and the maintenance of stable phenotypes. The human epigenome project is the determination of the pattern of DNA methylation in multiple cell types. Some methylation sites, such as those in repeated genetic elements, are likely to be the same in all cell types, but genes with specialized functions will have distinct patterns of DNA methylation. Another project for the future is the study of the reprogramming of the genome in gametogenesis and early development. Much is already known about the de novo methylation of tumor suppressor genes in cancer cells, but the significance of epigenetic defects during ageing and in some familial diseases remains to be determined.  相似文献   

7.
8.
《Epigenetics》2013,8(4):428-439
Growing evidence supports the existence of a subpopulation of cancer cells with stem cell characteristics within breast tumors. In spite of its potential clinical implications, an understanding of the mechanisms responsible for retaining the stem cell characteristics in these cells is still lacking. Here, we used the mammosphere model combined with DNA methylation bead arrays and quantitative gene expression to characterize the epigenetic mechanisms involved in the regulation of developmental pathways in putative breast cancer stem cells. Our results revealed that MCF7-derived mammospheres exhibit distinct CpG promoter methylation profiles in a specific set of genes, including those involved in Jak-STAT signaling pathway. Hypomethylation of several gene components of the Jak-STAT pathway was correlated with an increased expression in mammospheres relative to parental cells. Remarkably, cell sorting of the cells with a putative cancer stem cell phenotype (CD44+/CD24 low) suggests a constitutive activation of Jak-STAT pathway in these cells. These results show that Jak-STAT activation may represent a characteristic of putative breast cancer stem cells. In addition, they favor the concept that the expression of cancer stem-like pathways and the establishment and maintenance of defining properties of cancer stem cells are orchestrated by epigenetic mechanisms.  相似文献   

9.
10.
DNA methylation and epigenetic inheritance   总被引:3,自引:0,他引:3  
Classical genetics has revealed the mechanisms for the transmission of genes from generation to generation, but the strategy of the genes in unfolding the developmental programme remains obscure. Epigenetics comprises the study of the mechanisms that impart temporal and spatial control on the activities of all those genes required for the development of a complex organism from the zygote to the adult. Epigenetic changes in gene activity can be studied in relation to DNA methylation in cultured mammalian cells and it is also possible to isolate and characterize mutants with altered DNA methylase activity. Although this experimental system is quite far removed from the epigenetic controls acting during development it does provide the means to clarify the rules governing the silencing of genes by specific DNA methylation and their reactivation by demethylation. This in turn will facilitate studies on the control of gene expression in somatic cells of the developing organism or the adult. The general principles of epigenetic mechanisms can be defined. There are extreme contrasts between instability or switches in gene expression, such as those in stem-line cells, and the stable heritability of a specialized pattern of gene activities. In some situations cell lineages are known to be important, whereas in others coordinated changes in groups of cells have been demonstrated. Control of numbers of cell divisions and the size of organisms, or parts of organisms, is also essential. The epigenetic determination of gene expression can be reversed or reprogrammed in the germ line. The extent to which methylation or demethylation of specific DNA sequences can help explain these basic epigenetic mechanisms is briefly reviewed.  相似文献   

11.
During development, patterns of differential gene expression, defining determined states of cells, need to be maintained over many cell generations. In Drosophila, genetic and molecular analyses led to the discovery of a set of proteins which seem to exert such a memory function by using epigenetic mechanisms. Recent experiments demonstrate that, in particular, the heritable inactivation of regulatory genes relies on stable changes in the higher-order constitution of chromatin .  相似文献   

12.
13.
Epigenetic gene silencing, and associated promoter CpG island DNA hypermethylation, is an alternative mechanism to mutations by which tumor suppressor genes may be inactivated within a cancer cell 1-4,5-7. These epigenetic changes are prevalent in all types of cancer, and their appearance may precede genetic changes in pre-malignant cells and foster the accumulation of additional genetic and epigenetic hits8. These epigenetically modified genes constitute important categories of tumor suppressor genes including cell cycle regulators, pro-differentiation factors, and anti-apoptotic genes3, and many of these genes are known to play a role in normal development 9-11. While the silencing of these genes may play an essential role in tumor initiation or progression, the mechanisms underlying the specific targeting of these genes for DNA hypermethylation remains to be determined. The large numbers of epigenetically silenced genes that may be present in any given tumor, and the clustering of silenced genes within single cell pathways12, begs the question of whether gene silencing is a series of random events resulting in an enhanced survival of a pre-malignant clone, or whether silencing is the result of a directed, instructive program for silencing initiation reflective of the cells of origin for tumors. In this regard, the current review stresses the latter hypothesis and the important possibility that the program is linked, at least for silencing of some cancer genes, to the epigenetic control of stem/precursor cell gene expression patterns.  相似文献   

14.
15.
16.
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.  相似文献   

17.
18.
19.
Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号