首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
All great ape species are endangered, and infectious diseases are thought to pose a particular threat to their survival. As great ape species vary substantially in social organisation and gregariousness, there are likely to be differences in susceptibility to disease types and spread. Understanding the relation between social variables and disease is therefore crucial for implementing effective conservation measures. Here, we simulate the transmission of a range of diseases in a population of orang-utans in Sabangau Forest (Central Kalimantan) and a community of chimpanzees in Budongo Forest (Uganda), by systematically varying transmission likelihood and probability of subsequent recovery. Both species have fission-fusion social systems, but differ considerably in their level of gregariousness. We used long-term behavioural data to create networks of association patterns on which the spread of different diseases was simulated. We found that chimpanzees were generally far more susceptible to the spread of diseases than orang-utans. When simulating different diseases that varied widely in their probability of transmission and recovery, it was found that the chimpanzee community was widely and strongly affected, while in orang-utans even highly infectious diseases had limited spread. Furthermore, when comparing the observed association network with a mean-field network (equal contact probability between group members), we found no major difference in simulated disease spread, suggesting that patterns of social bonding in orang-utans are not an important determinant of susceptibility to disease. In chimpanzees, the predicted size of the epidemic was smaller on the actual association network than on the mean-field network, indicating that patterns of social bonding have important effects on susceptibility to disease. We conclude that social networks are a potentially powerful tool to model the risk of disease transmission in great apes, and that chimpanzees are particularly threatened by infectious disease outbreaks as a result of their social structure.  相似文献   

2.
Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients'' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of ‘peripheral nodes’ that have only a few sexual interactions and a minority of ‘hub nodes’ that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks can have important repercussions in the design of intervention strategies for disease control.  相似文献   

3.
Dynamics and Control of Diseases in Networks with Community Structure   总被引:1,自引:0,他引:1  
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.  相似文献   

4.
A major goal of infectious disease epidemiology is to understand and predict the spread of infections within human populations, with the intention of better informing decisions regarding control and intervention. However, the development of fully mechanistic models of transmission requires a quantitative understanding of social interactions and collective properties of social networks. We performed a cross-sectional study of the social contacts on given days for more than 5000 respondents in England, Scotland and Wales, through postal and online survey methods. The survey was designed to elicit detailed and previously unreported measures of the immediate social network of participants relevant to infection spread. Here, we describe individual-level contact patterns, focusing on the range of heterogeneity observed and discuss the correlations between contact patterns and other socio-demographic factors. We find that the distribution of the number of contacts approximates a power-law distribution, but postulate that total contact time (which has a shorter-tailed distribution) is more epidemiologically relevant. We observe that children, public-sector and healthcare workers have the highest number of total contact hours and are therefore most likely to catch and transmit infectious disease. Our study also quantifies the transitive connections made between an individual''s contacts (or clustering); this is a key structural characteristic of social networks with important implications for disease transmission and control efficacy. Respondents'' networks exhibit high levels of clustering, which varies across social settings and increases with duration, frequency of contact and distance from home. Finally, we discuss the implications of these findings for the transmission and control of pathogens spread through close contact.  相似文献   

5.
Infectious disease modeling of social contagion in networks   总被引:1,自引:0,他引:1  
Many behavioral phenomena have been found to spread interpersonally through social networks, in a manner similar to infectious diseases. An important difference between social contagion and traditional infectious diseases, however, is that behavioral phenomena can be acquired by non-social mechanisms as well as through social transmission. We introduce a novel theoretical framework for studying these phenomena (the SISa model) by adapting a classic disease model to include the possibility for 'automatic' (or 'spontaneous') non-social infection. We provide an example of the use of this framework by examining the spread of obesity in the Framingham Heart Study Network. The interaction assumptions of the model are validated using longitudinal network transmission data. We find that the current rate of becoming obese is 2 per year and increases by 0.5 percentage points for each obese social contact. The rate of recovering from obesity is 4 per year, and does not depend on the number of non-obese contacts. The model predicts a long-term obesity prevalence of approximately 42, and can be used to evaluate the effect of different interventions on steady-state obesity. Model predictions quantitatively reproduce the actual historical time course for the prevalence of obesity. We find that since the 1970s, the rate of recovery from obesity has remained relatively constant, while the rates of both spontaneous infection and transmission have steadily increased over time. This suggests that the obesity epidemic may be driven by increasing rates of becoming obese, both spontaneously and transmissively, rather than by decreasing rates of losing weight. A key feature of the SISa model is its ability to characterize the relative importance of social transmission by quantitatively comparing rates of spontaneous versus contagious infection. It provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviors, health states, ideas or diseases with reservoirs.  相似文献   

6.
Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development.  相似文献   

7.
The epidemic spread of infectious diseases is ubiquitous and often has a considerable impact on public health and economic wealth. The large variability in the spatio-temporal patterns of epidemics prohibits simple interventions and requires a detailed analysis of each epidemic with respect to its infectious agent and the corresponding routes of transmission. To facilitate this analysis, we introduce a mathematical framework which links epidemic patterns to the topology and dynamics of the underlying transmission network. The evolution, both in disease prevalence and transmission network topology, is derived from a closed set of partial differential equations for infections without allowing for recovery. The predictions are in excellent agreement with complementarily conducted agent-based simulations. The capacity of this new method is demonstrated in several case studies on HIV epidemics in synthetic populations: it allows us to monitor the evolution of contact behavior among healthy and infected individuals and the contributions of different disease stages to the spreading of the epidemic. This gives both direction to and a test bed for targeted intervention strategies for epidemic control. In conclusion, this mathematical framework provides a capable toolbox for the analysis of epidemics from first principles. This allows for fast, in silico modeling--and manipulation--of epidemics and is especially powerful if complemented with adequate empirical data for parameterization.  相似文献   

8.
Understanding infection dynamics of respiratory diseases requires the identification and quantification of behavioural, social and environmental factors that permit the transmission of these infections between humans. Little empirical information is available about contact patterns within real-world social networks, let alone on differences in these contact networks between populations that differ considerably on a socio-cultural level. Here we compared contact network data that were collected in the Netherlands and Thailand using a similar online respondent-driven method. By asking participants to recruit contact persons we studied network links relevant for the transmission of respiratory infections. We studied correlations between recruiter and recruited contacts to investigate mixing patterns in the observed social network components. In both countries, mixing patterns were assortative by demographic variables and random by total numbers of contacts. However, in Thailand participants reported overall more contacts which resulted in higher effective contact rates. Our findings provide new insights on numbers of contacts and mixing patterns in two different populations. These data could be used to improve parameterisation of mathematical models used to design control strategies. Although the spread of infections through populations depends on more factors, found similarities suggest that spread may be similar in the Netherlands and Thailand.  相似文献   

9.
Simple deterministic models are still at the core of theoretical epidemiology despite the increasing evidence for the importance of contact networks underlying transmission at the individual level. These mean-field or 'compartmental' models based on homogeneous mixing have made, and continue to make, important contributions to the epidemiology and the ecology of infectious diseases but fail to reproduce many of the features observed for disease spread in contact networks. In this work, we show that it is possible to incorporate the important effects of network structure on disease spread with a mean-field model derived from individual level considerations. We propose that the fundamental number known as the basic reproductive number of the disease, R0, which is typically derived as a threshold quantity, be used instead as a central parameter to construct the model from. We show that reliable estimates of individual level parameters can replace a detailed knowledge of network structure, which in general may be difficult to obtain. We illustrate the proposed model with small world networks and the classical example of susceptible-infected-recovered (SIR) epidemics.  相似文献   

10.
Network frailty and the geometry of herd immunity   总被引:2,自引:0,他引:2  
The spread of infectious disease through communities depends fundamentally on the underlying patterns of contacts between individuals. Generally, the more contacts one individual has, the more vulnerable they are to infection during an epidemic. Thus, outbreaks disproportionately impact the most highly connected demographics. Epidemics can then lead, through immunization or removal of individuals, to sparser networks that are more resistant to future transmission of a given disease. Using several classes of contact networks-Poisson, scale-free and small-world-we characterize the structural evolution of a network due to an epidemic in terms of frailty (the degree to which highly connected individuals are more vulnerable to infection) and interference (the extent to which the epidemic cuts off connectivity among the susceptible population that remains following an epidemic). The evolution of the susceptible network over the course of an epidemic differs among the classes of networks; frailty, relative to interference, accounts for an increasing component of network evolution on networks with greater variance in contacts. The result is that immunization due to prior epidemics can provide greater community protection than random vaccination on networks with heterogeneous contact patterns, while the reverse is true for highly structured populations.  相似文献   

11.
Owing to their rapid reproductive rate and the severe penalties for reduced fitness, diseases are under immense evolutionary pressure. Understanding the evolutionary response of diseases in new situations has clear public-health consequences, given the changes in social and movement patterns over recent decades and the increased use of antibiotics. This paper investigates how a disease may adapt in response to the routes of transmission available between infected and susceptible individuals. The potential transmission routes are defined by a computer-generated contact network, which we describe as either local (highly clustered networks where connected individuals are likely to share common contacts) or global (unclustered networks with a high proportion of long-range connections). Evolution towards stable strategies operates through the gradual random mutation of disease traits (transmission rate and infectious period) whenever new infections occur. In contrast to mean-field models, the use of contact networks greatly constrains the evolutionary dynamics. In the local networks, high transmission rates are selected for, as there is intense competition for susceptible hosts between disease progeny. By contrast, global networks select for moderate transmission rates because direct competition between progeny is minimal and a premium is placed upon persistence. All networks show a very slow but steady rise in the infectious period.  相似文献   

12.
The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate , the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability.  相似文献   

13.
The spatial-temporal dynamics of farm animal diseases depend both on disease specific processes and the underlying contact network between farms. Indirect transmission via free-living bacteria in the environment is an important transmission route and contributes significantly to the dynamics. The pair-wise model has been developed to include both direct transmission and indirect transmission via free stages. The model is compared with stochastic simulations of epidemics on contact networks. The network framework is applied to the investigation of the epidemiological dynamics of between-herd transmission of Salmonella spp. The main results help to explain differences in observed epidemiological patterns and to identify possible causes for different strains of Salmonella developing so much variation in their infection dynamics in UK dairy herds. Numerical results show that shorter infectious period, more persistent immune response and more rapid removal of faeces result in a lower prevalence of infection and a greater tendency for (damped) oscillation. A possible control strategy is consequently suggested. Furthermore, the effect of network structure on long-term dynamics is examined.  相似文献   

14.
Human populations are arranged in social networks that determine interactions and influence the spread of diseases, behaviours and ideas. We evaluate the spread of long-term emotional states across a social network. We introduce a novel form of the classical susceptible–infected–susceptible disease model which includes the possibility for ‘spontaneous’ (or ‘automatic’) infection, in addition to disease transmission (the SISa model). Using this framework and data from the Framingham Heart Study, we provide formal evidence that positive and negative emotional states behave like infectious diseases spreading across social networks over long periods of time. The probability of becoming content is increased by 0.02 per year for each content contact, and the probability of becoming discontent is increased by 0.04 per year per discontent contact. Our mathematical formalism allows us to derive various quantities from the data, such as the average lifetime of a contentment ‘infection’ (10 years) or discontentment ‘infection’ (5 years). Our results give insight into the transmissive nature of positive and negative emotional states. Determining to what extent particular emotions or behaviours are infectious is a promising direction for further research with important implications for social science, epidemiology and health policy. Our model provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviours, health states, ideas or diseases with reservoirs.  相似文献   

15.
Contact network epidemiology is an approach to modeling the spread of infectious diseases that explicitly considers patterns of person-to-person contacts within a community. Contacts can be asymmetric, with a person more likely to infect one of their contacts than to become infected by that contact. This is true for some sexually transmitted diseases that are more easily caught by women than men during heterosexual encounters; and for severe infectious diseases that cause an average person to seek medical attention and thereby potentially infect health care workers (HCWs) who would not, in turn, have an opportunity to infect that average person. Here we use methods from percolation theory to develop a mathematical framework for predicting disease transmission through semi-directed contact networks in which some contacts are undirected-the probability of transmission is symmetric between individuals-and others are directed-transmission is possible only in one direction. We find that the probability of an epidemic and the expected fraction of a population infected during an epidemic can be different in semi-directed networks, in contrast to the routine assumption that these two quantities are equal. We furthermore demonstrate that these methods more accurately predict the vulnerability of HCWs and the efficacy of various hospital-based containment strategies during outbreaks of severe respiratory diseases.  相似文献   

16.
One way to describe the spread of an infection on a network is by approximating the network by a random graph. However, the usual way of constructing a random graph does not give any control over the number of triangles in the graph, while these triangles will naturally arise in many networks (e.g. in social networks). In this paper, random graphs with a given degree distribution and a given expected number of triangles are constructed. By using these random graphs we analyze the spread of two types of infection on a network: infections with a fixed infectious period and infections for which an infective individual will infect all of its susceptible neighbors or none. These two types of infection can be used to give upper and lower bounds for R(0), the probability of extinction and other measures of dynamics of infections with more general infectious periods.  相似文献   

17.
Prediction and control of the geographical spread of emerging pathogens has become a central public health issue. Because these infectious diseases are by definition novel, there are few data to characterize their dynamics. One possible solution to this problem is to apply lessons learnt from analyses of historical data on familiar and epidemiologically similar pathogens. However, the portability of the spatial ecology of an infectious disease in a different epoch to other infections remains unexamined. Here, we study this issue by taking advantage of the recent re-emergence of pertussis in the United States to compare its spatial transmission dynamics throughout the 1950s with the past decade. We report 4-year waves, sweeping across the continent in the 1950s. These waves are shown to emanate from highly synchronous foci in the northwest and northeast coasts. In contrast, the recent resurgence of the disease is characterized by 5.5-year epidemics with no particular spatial structure. We interpret this to be the result of dramatic changes in patterns of human movement over the second half of the last century, together with changing age distribution of pertussis. We conclude that extrapolation regarding the spatial spread of contemporaneous pathogens based on analyses of historical incidence may be potentially very misleading.  相似文献   

18.
In socially living animals, individuals interact through complex networks of contact that may influence the spread of disease. Whereas traditional epidemiological models typically assume no social structure, network theory suggests that an individual’s location in the network determines its risk of infection. Empirical, especially experimental, studies of disease spread on networks are lacking, however, largely due to a shortage of amenable study systems. We used automated video-tracking to quantify networks of physical contact among individuals within colonies of the social bumble bee Bombus impatiens. We explored the effects of network structure on pathogen transmission in naturally and artificially infected hives. We show for the first time that contact network structure determines the spread of a contagious pathogen (Crithidia bombi) in social insect colonies. Differences in rates of infection among colonies resulted largely from differences in network density among hives. Within colonies, a bee’s rate of contact with infected nestmates emerged as the only significant predictor of infection risk. The activity of bees, in terms of their movement rates and division of labour (e.g., brood care, nest care, foraging), did not influence risk of infection. Our results suggest that contact networks may have an important influence on the transmission of pathogens in social insects and, possibly, other social animals.  相似文献   

19.
The epidemiology of infectious diseases makes use of a number of terms, such as exposure, infected, carrier, attack rate, and immunity. Researchers who intend to model the spread of epidemics should be aware of the problems with some of these terms. The role played by inapparent, or subclinical, infections is receiving increased attention in infectious disease epidemiology. Patients with such infections may never be reported as cases, which could give rise to problems when, for example, data from national surveillance bodies are being used for modeling. The assignment of patients to different transmission groups must, in most cases, rely on self-reported data from the medical interview. This possible source of bias should be recognized.  相似文献   

20.
Individual heterogeneity can influence the dynamics of infectious diseases in wildlife and humans alike. Thus, recent work has sought to identify behavioural characteristics that contribute disproportionately to individual variation in pathogen acquisition (super-receiving) or transmission (super-spreading). However, it remains unknown whether the same behaviours enhance both acquisition and transmission, a scenario likely to result in explosive epidemics. Here, we examined this possibility in an ecologically relevant host–pathogen system: house finches and their bacterial pathogen, Mycoplasma gallisepticum, which causes severe conjunctivitis. We examined behaviours likely to influence disease acquisition (feeder use, aggression, social network affiliations) in an observational field study, finding that the time an individual spends on bird feeders best predicted the risk of conjunctivitis. To test whether this behaviour also influences the likelihood of transmitting M. gallisepticum, we experimentally inoculated individuals based on feeding behaviour and tracked epidemics within captive flocks. As predicted, transmission was fastest when birds that spent the most time on feeders initiated the epidemic. Our results suggest that the same behaviour underlies both pathogen acquisition and transmission in this system and potentially others. Identifying individuals that exhibit such behaviours is critical for disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号