首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。  相似文献   

3.
Recent investigations credited important roles to C-type natriuretic peptide (CNP) signaling during chondrogenesis. This study investigated the putative role of CNP in transforming growth factor (TGF)-β1 induced in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs) in pellet culture. MSCs were derived from human trabecular bone and were characterized on the basis of their cell surface antigens and adipogenic, osteogenic, and chondrogenic differentiation potential. TGF-β1 induced chondrogenic differentiation and glycosaminoglycan (GAG) synthesis was analyzed on the basis of basic histology, collagen type II, Sox 9 and aggrecan expressions, and Alcian blue staining. Results revealed that human trabecular bone-derived MSCs express CNP and NPR-B analyzed on the basis of RT-PCR and immunohistochemistry. In pellet cultures of MSCs TGF-β1 successfully induced chondrogenic differentiation and GAG synthesis. RT-PCR analyses of both CNP and NPR-B during this process revealed an activation of this signaling pathway in response to TGF-β1. Similar cultures induced with TGF-β1 and treated with different doses of CNP showed that CNP supplementation at 10?8 and 10?7 M concentrations significantly increased GAG synthesis in a dose dependent manner, whereas at 10?6 M concentration this stimulatory effect was diminished. In conclusion, CNP/NPR-B signaling pathway is activated during TGF-β1 induced chondrogenic differentiation of human trabecular bone-derived MSCs and may strongly be involved in GAG synthesis during this process. This effect is likely to be a dose-dependent effect.  相似文献   

4.
This study investigated the involvement of CNP-3, chick homologue for human C-type natriuretic peptide (CNP), in TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells (MSCs). Chondrogenic differentiation of MSCs in pellet cultures was induced by TGF-β1. Chondrogenic differentiation and glycosaminoglycan synthesis were analyzed on the basis of basic histology, collagen type II expression, and Alcian blue staining. Antibodies against CNP and NPR-B were used to block their function during these processes. Results revealed that expression of CNP-3 and NPR-B in MSCs were regulated by TGF-β1 in monolayer cultures at mRNA level. In pellet cultures of MSCs, TGF-β1 successfully induced chondrogenic differentiation and glycosaminoglycan synthesis. Addition of CNP into the TGF-β1 supplemented chondrogenic differentiation medium further induced the glycosaminoglycan synthesis and hypertrophy of differentiated chondrocytes in these pellets. Pellets induced with TGF-β1 and treated with antibodies against CNP and NPR-B, did show collagen type II expression, however, Alcian blue staining showing glycosaminoglycan synthesis was significantly suppressed. In conclusion, CNP-3/NPR-B signaling may strongly be involved in synthesis of glycosaminoglycans of the chondrogenic matrix and hypertrophy of differentiated chondrocytes during TGF-β1 induced chondrogenic differentiation of MSCs.  相似文献   

5.
This study was designed to evaluate the additive effects of transforming growth factor-beta3 (TGF-β3) and hyaluronic acid (HA) on chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The hMSCs were cultured on collagen type I-, HA-, or fibronectin-coated cell culture dishes with or without TGF-β3 added to the culture medium. Four weeks after cell culture, chondrogenic differentiation of hMSCs was determined by evaluating the expression of cartilage-specific markers using real-time polymerase chain reaction, immunocytochemistry, and Western blot analysis. hMSCs cultured on HA-coated dishes with TGF-β3 supplementation revealed a prominent increase in collagen type II, aggrecan, and Sox9. When hMSCs were cultured without TGF-β3 supplementation, only hMSCs cultured on HA-coated dishes showed prominent expression of the cartilage-specific markers. This study shows that chondrogenic differentiation of hMSCs can be enhanced additively by interactions with both a specific cell-adhesion matrix and a soluble growth factor.  相似文献   

6.
The tissue engineering technique using mesenchymal stem cells (MSCs) and scaffolds is promising. Transforming growth factor-β1 (TGF-β1) is generally accepted as an chondrogenic agent, but immunorejection and unexpected side effects, such as tumorigenesis and heterogeneity, limit its clinical application. Autogenous platelet-rich plasma (PRP), marked by low immunogenicity, easy accessibility, and low-cost, may be favorable for cartilage regeneration. In our study, the effect of PRP on engineered cartilage constructed by MSCs and collagen hydrogel in vitro and in vivo was investigated and compared with TGF-β1. The results showed that PRP promoted cell proliferation and gene and protein expressions of chondrogenic markers via the TGF-β/SMAD signaling pathway. Meanwhile, it suppressed the expression of collagen type I, a marker of fibrocartilage. Furthermore, PRP accelerated cartilage regeneration on defects with engineered cartilage, advantageous over TGF-β1, as evaluated by histological analysis and immunohistochemical staining. Our work demonstrates that autogenous PRP may substitute TGF-β1 as a potent and reliable chondrogenic inducer for therapy of cartilage defect.  相似文献   

7.
A study of the cartilage differentiation of mesenchymal stem cells (MSCs) would be of particular interest since one strategy for cell-based treatment of cartilage defects emphasizes the use of cells that are in a differentiated state. The present study has attempted to evaluate the effects of two well-known glycogen synthase kinase-3 inhibitors, including lithium chloride (LiCl) and SB216763 on a human marrow-derived MSC (hMSC) chondrogenic culture. Passaged-3 MSCs were condensed into small pellets and cultivated in the following groups based on the supplementation of chondrogenic medium: transforming growth factor (TGF)-β1, TGF-β1 + LiCl, TGF-β1 + SB216763, TGF-β3, TGF-β3 + LiCl, and TGF-β3 + SB216763. The cultures were maintained for 21 days and then analyzed for expression of Sox9, aggrecan, collagen II, β-catenin, and axin genes. Deposition of glycosaminoglycan (GAG) in the cartilage matrix was also measured for certain cultures. The presence of both LiCl and SB216763 along with TGF-β in the MSC chondrogenic culture led to the up-regulation of cartilage-specific genes. TGF-β3 appeared much better than TGF-β1. Based on our findings, SB216763 was more effective in up-regulation of cartilage-specific genes. These chondrogenic effects appeared to be mediated through the Wnt signaling pathway since β-catenin and axin tended to be up-regulated and down-regulated, respectively. In the culture with SB216763 + TGF-β3, significantly more GAG was deposited (P < 0.05). In conclusion, addition of either SB216763 or LiCl to hMSC chondrogenic culture up-regulates cartilage-specific gene expression and enhances GAG deposition in the culture.  相似文献   

8.
9.
10.
11.
Yang B  Guo H  Zhang Y  Dong S  Ying D 《BMB reports》2011,44(1):28-33
MicroRNAs are potential key regulators in mesenchymal stem cells chondrogenic differentiation. However, there were few reports about the accurate effects of miRNAs on chondrogenic differentiation. To investigate the mechanisms of miRNAs-mediated regulation during the process, we performed miRNAs microarray in MSCs at four different stages of TGF-β3-induced chondrogenic differentiation. We observed that eight miRNAs were significantly up-regulated and five miRNAs were downregulated. Interestingly, we found two miRNAs clusters, miR-143/145 and miR-132/212, kept on down-regulation in the process. Using bioinformatics approaches, we analyzed the target genes of these differentially expressed miRNAs and found a series of them correlated with the process of chondrogenesis. Furthermore, the qPCR results showed that the up-regulated (or down-regulated) expression of miRNAs were inversely associated with the expression of predicted target genes. Our results first revealed the expression profiles of miRNAs in chondrogenic differentiation of MSCs and provided a new insight on complicated regulation mechanisms of chondrogenesis.  相似文献   

12.
13.
14.
15.
16.
17.
BackgroundApigenin can reduce cardiomyocyte hypertrophy by downregulating hypoxia inducible factor-1 alpha (HIF-1α) expression. However, its effects on cardiac fibroblasts (CFs) and its exact inhibitory molecular mechanisms on HIF-1α remain unclear.PurposeThis study aims to examine the effects of apigenin on cell proliferation and differentiation, microRNA-122-5p (miR-122-5p) expression, and HIF-1α-mediated Smad signaling pathway in transforming growth factor beta 1 (TGF-β1)-stimulated CFs and cardiac fibrosis and to investigate the relationship between miR-122-5p and HIF-1α.MethodsThe TGF-β1-stimulated CFs, the combination of TGF-β1-stimulated and miR-122-5p mimic-transfected CFs, the combination of TGF-β1-stimulated and miR-122-5p inhibitor-transfected CFs, and the isoproterenol-induced cardiac fibrotic mice were used and treated with or without apigenin. The recombinant lentiviruses overexpressing HIF-1α vector and miR-122-5p mimic were co-transfected to observe their interaction. Related mRNA and protein expressions and myocardial collagen were determined. The luciferase reporter gene that contains HIF-1α wild type or mutant type 3’-UTR was used, and the luciferase activity was determined to verify the direct link between miR-122-5p and HIF-1α.ResultsIn the TGF-β1-stimulated CFs, apigenin treatment increased the miR-122-5p and Smad7 expressions and decreased the HIF-1α, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 expressions. Similar and inverse results were observed in the miR-122-5p mimic- and inhibitor-transfected CFs, respectively. Moreover, the miR-122-5p mimic could antagonize the effects of TGF-β1 in the TGF-β1 and miR-122-5p mimic-combined CFs, and the miR-122-5p inhibitor could enhance the effects of TGF-β1 in the TGF-β1 and miR-122-5p inhibitor-combined CFs. In the two aforementioned cell models, the addition of apigenin could further enhance the effects of miR-122-5p mimic and partially reverse the effects of miR-122-5p inhibitor. After treatment of HIF-1α-transfected CFs with miR-122-5p mimic, the HIF-1α expression decreased. Further study confirmed that HIF-1α was a direct target of miR-122-5p. Apigenin also decreased the myocardial collagen accumulation in cardiac fibrotic mice.ConclusionApigenin could suppress the differentiation and collagen synthesis of TGF-β1-stimulated CFs and mouse cardiac fibrosis, and its mechanisms were related to the increment of miR-122-5p expression and subsequent downregulation of HIF-1α expression via direct interaction, which might finally result in the decrements of Smad2/3 and p-Smad2/3 expressions and increment of Smad7 expression.  相似文献   

18.
目的探讨甲状旁腺素(PTH)对小鼠软骨细胞成软骨性的促进作用和终末期分化的抑制作用。方法分离和培养新生小鼠胸骨软骨细胞,经PTH处理,倒置显微镜观察细胞形态的变化;Alcian蓝染色和碱性磷酸酶(ALP)染色方法检测软骨细胞蛋白多糖和ALP的分泌;RT-PCT法和Western blot方法检测细胞内成软骨因子和病理性肥大分化因子基因和蛋白的表达。结果新生小鼠胸骨软骨细胞具有自发成熟分化的特征,与对照组相比,经PTH处理的细胞更接近于软骨细胞形态;PTH明显提高软骨细胞Alcian蓝染色的强度,降低ALP染色的强度;PTH显著提高细胞内Sox9和Aggrecan基因和蛋白的表达,明显降低ALP和Runx2基因和蛋白的表达。结论 PTH具有促进小鼠软骨细胞成软骨和抑制其终末期分化的作用。  相似文献   

19.
Autophagy is a highly conserved cellular process regulating turnover of cytoplasmic proteins via a lysosome-dependent pathway. Here we show that kidneys from mice deficient in autophagic protein Beclin 1 exhibited profibrotic phenotype, with increased collagen deposition. Reduced Beclin 1 expression, through genetic disruption of beclin 1 or knockdown by specific siRNA in primary mouse mesangial cells (MMC), resulted in increased protein levels of type I collagen (Col-I). Inhibition of autolysosomal protein degradation by bafilomycin A(1) also increased Col-I protein levels and colocalization of Col-I with LC3, an autophagy marker, or LAMP-1, a lysosome marker, whereas treatment with TFP, an inducer of autophagy, resulted in decreased Col-I protein levels induced by TGF-β1, without alterations in Col-I α1 mRNA. Heterozygous deletion of beclin 1 increased accumulation of aggregated Col-I under nonstimulated conditions, and stimulation with TGF-β1 further increased aggregated Col-I. These data indicate that Col-I and aggregated, insoluble procollagen I undergo intracellular degradation via autophagy. A cytoprotective role of autophagy is implicated in kidney injury, and we demonstrate that low-dose carbon monoxide, shown to exert cytoprotection against renal fibrosis, induces autophagy to suppress accumulation of Col-I induced by TGF-β1. We also show that TGF-β1 induces autophagy in MMC via TAK1-MKK3-p38 signaling pathway. The dual functions of TGF-β1, as both an inducer of Col-I synthesis and an inducer of autophagy and Col-I degradation, underscore the multifunctional nature of TGF-β1. Our findings suggest a novel role of autophagy as a cytoprotective mechanism to negatively regulate and prevent excess collagen accumulation in the kidney.  相似文献   

20.
Transcriptional mechanisms of chondrocyte differentiation.   总被引:21,自引:0,他引:21  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号