首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We conducted gross and microscopic characterizations of lesions in Cnidaria from Palmyra Atoll, Central Pacific. We found growth anomalies (GA) to be the most commonly encountered lesion. Cases of discoloration and tissue loss were rare. GAs had a focal or multi-focal distribution and were predominantly nodular, exophytic, and umbonate. In scleractinians, the majority of GAs manifested as hyperplasia of the basal body wall (52% of cases), with an associated absence or reduction of polyp structure (mesenteries and filaments, actinopharynx and tentacles), and depletion of zooxanthellae in the gastrodermis of the upper body wall. In the soft corals Sinularia sp. and Lobophytum sp., GAs exclusively manifested as prominent hyperplasia of the coenenchyme with an increased density of solenia. In contrast to scleractinians, soft coral GAs displayed an inflammatory and necrotizing component with marked edema of the mesoglea, accompanied by infiltrates of variably-sized granular amoebocytes. Fungi, algae, sponges, and Crustacea were present in some scleractinian GAs, but absent in soft coral GAs. Fragmentation of tissues was a common finding in Acropora acuminata and Montipora cf. dilatata colonies with tissue loss, although no obvious causative agents were seen. Discoloration in the zoanthid, Palythoa tuberculosa, was found to be the result of necrosis, while in Lobophytum sp. discoloration was the result of zooxanthellar depletion (bleaching). Soft corals with discoloration or tissue loss showed a marked inflammatory response, however no obvious causative organisms were seen. Lesions that appeared similar at the gross level were revealed to be distinct by microscopy, emphasizing the importance of histopathology.  相似文献   

2.
We performed histological examination of 69 samples of Acropora sp. manifesting different types of tissue loss (Acropora White Syndrome-AWS) from Hawaii, Johnston Atoll and American Samoa between 2002 and 2006. Gross lesions of tissue loss were observed and classified as diffuse acute, diffuse subacute, and focal to multifocal acute to subacute. Corals with acute tissue loss manifested microscopic evidence of necrosis sometimes associated with ciliates, helminths, fungi, algae, sponges, or cyanobacteria whereas those with subacute tissue loss manifested mainly wound repair. Gross lesions of AWS have multiple different changes at the microscopic level some of which involve various microorganisms and metazoa. Elucidating this disease will require, among other things, monitoring lesions over time to determine the pathogenesis of AWS and the potential role of tissue-associated microorganisms in the genesis of tissue loss. Attempts to experimentally induce AWS should include microscopic examination of tissues to ensure that potentially causative microorganisms associated with gross lesion are not overlooked.  相似文献   

3.
Benthic algae are associated with coral death in the form of stress and disease. It''s been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a prerequisite to potential transmission of these pathogens.  相似文献   

4.
Coral mortality and interaction with algae in relation to sedimentation   总被引:4,自引:0,他引:4  
The impact of sedimentation on coral–algal interactions was studied by monitoring tissue mortality and radial growth in two coral species, Colpophyllia natans and Siderastrea siderea, over a continuum of sediment input intensities. This study sets out to investigate (1) whether sedimentation can facilitate algal overgrowth of corals and (2) whether this was a significant cause of coral mortality. Over a 15-month period, 198 coral colonies were tagged and photographed at six sites along two replicate gradients of sediment input, spanning high inputs near river mouths to low inputs at exposed headlands. Photographs were taken so that they covered the interface between colonies and algae. Radial growth was measured along colony edges in contact with algae and unaffected by tissue loss from causes other than competition with algae. To establish whether algal overgrowth was a significant cause of coral mortality, tissue mortality on the colony surface area visible in the photographs was related to different causes, including sediment smothering, disease, and algal overgrowth. Radial growth became negative with increasing proximity to river mouths in C. natans and remained negative or close to zero throughout the gradients in S. siderea, overall suggesting that sedimentation can facilitate algal overgrowth on corals. However, the analysis of tissue mortality revealed that algal overgrowth was a relatively minor cause of tissue loss. In contrast, the most important cause of coral mortality in relation to sedimentation was from sediment smothering, probably during intense episodes of deposition associated with heavy rainfall. We conclude that sedimentation may lead to reef degradation by causing coral mortality through sediment smothering and burial, and then by suppressing the regrowth of surviving adult colonies through increased competition with algae.  相似文献   

5.
Coral Disease Diagnostics: What's between a Plague and a Band?   总被引:1,自引:0,他引:1       下载免费PDF全文
Recently, reports of coral disease have increased significantly across the world's tropical oceans. Despite increasing efforts to understand the changing incidence of coral disease, very few primary pathogens have been identified, and most studies remain dependent on the external appearance of corals for diagnosis. Given this situation, our current understanding of coral disease and the progression and underlying causes thereof is very limited. In the present study, we use structural and microbial studies to differentiate different forms of black band disease: atypical black band disease and typical black band disease. Atypical black band diseased corals were infected with the black band disease microbial consortium yet did not show any of the typical external signs of black band disease based on macroscopic observations. In previous studies, these examples, here referred to as atypical black band disease, would have not been correctly diagnosed. We also differentiate white syndrome from white diseases on the basis of tissue structure and the presence/absence of microbial associates. White diseases are those with dense bacterial communities associated with lesions of symbiont loss and/or extensive necrosis of tissues, while white syndromes are characteristically bacterium free, with evidence for extensive programmed cell death/apoptosis associated with the lesion and the adjacent tissues. The pathology of coral disease as a whole requires further investigation. This study emphasizes the importance of going beyond the external macroscopic signs of coral disease for accurate disease diagnosis.  相似文献   

6.
Recently, reports of coral disease have increased significantly across the world's tropical oceans. Despite increasing efforts to understand the changing incidence of coral disease, very few primary pathogens have been identified, and most studies remain dependent on the external appearance of corals for diagnosis. Given this situation, our current understanding of coral disease and the progression and underlying causes thereof is very limited. In the present study, we use structural and microbial studies to differentiate different forms of black band disease: atypical black band disease and typical black band disease. Atypical black band diseased corals were infected with the black band disease microbial consortium yet did not show any of the typical external signs of black band disease based on macroscopic observations. In previous studies, these examples, here referred to as atypical black band disease, would have not been correctly diagnosed. We also differentiate white syndrome from white diseases on the basis of tissue structure and the presence/absence of microbial associates. White diseases are those with dense bacterial communities associated with lesions of symbiont loss and/or extensive necrosis of tissues, while white syndromes are characteristically bacterium free, with evidence for extensive programmed cell death/apoptosis associated with the lesion and the adjacent tissues. The pathology of coral disease as a whole requires further investigation. This study emphasizes the importance of going beyond the external macroscopic signs of coral disease for accurate disease diagnosis.  相似文献   

7.
Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings.  相似文献   

8.
9.
 Elevated temperatures and solar ultraviolet (UV) radiation have been implicated as recent causes for the loss of symbiotic algae (i.e., bleaching) in corals and other invertebrates with photoautotrophic symbionts. One hypothesized mechanism of coral bleaching involves the production of reduced oxygen intermediates, or toxic oxygen, in the dinoflagellate symbionts and host tissues that subsequently causes cellular damage and expulsion of symbionts. Measurements of photosynthesis in the Caribbean coral Agaricia tenuifolia, taken during temperature-induced stress and exposure to full solar radiation, showed a decrease in photosynthetic performance followed by bleaching. Exposure of corals to exogenous antioxidants that scavenge reactive oxygen species during temperature-induced stress improves maximum photosynthetic capacity to rates indistinguishable from corals measured at the ambient temperature of their site of collection. Additionally, these antioxidants prevent the coral from “ bleaching ” and affect the mechanism of symbiont loss from the coral host. These observations confirm a role for oxidative stress, whether caused by elevated temperatures or exposure to UV radiation, in the bleaching phenomenon. Accepted: 18 October 1996  相似文献   

10.
The change of Stylophora pistillata coral photosynthetic function (oxygen exchange and biomass of symbionts) under starvation and food enrichment was studied to understand the role of heterotrophy in nitrogen supplements of zooxanthellae. The starvation caused the decrease of frequency of zooxanthellae cells division in 7-10 times. The number of degraded algae cells increased in same proportion and, as a result, the density of zooxanthellae in corals decreased about two times during one-two weeks. Under starvation corals kept their photosynthetic capacity at the level of corals in situ by means of enhancing the zooxanthellae gross photosynthesis. The respiration rate of coral had tendency to increase and the dry mass of polyp tissue to decrease. Under artificial feeding which was following starvation the zooxanthellae density increased in 1.5-2 times, and particular food caused more intensive accumulation of zooxanthellae comparing to dissolved inorganic ammonium. The feeding regime did not affect dry mass of polyp tissue and chlorophyll content as well as respiration and gross productivity of the corals. The conclusion about high effectiveness of particular feeding for supplying symbiotic algae with nitrogen was made and trophic status of zooxanthellae in hospite was determined as unlimited by nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号