首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neotropical aquatic ecosystems have a rich aquatic flora. In this report, we have listed the aquatic flora of various habitats of the upper Paraná River floodplain by compiling data from literature and records of our own continuous collections conducted during the period 2007-2009. Our main purposes were to assess the macrophyte richness in the Paraná floodplain, to compare it with other South American wetlands and to assess whether the number of species recorded in South American inventories has already reached an asymptote. We recorded a total of 153 species of macrophytes in the Upper Paraná River floodplain, belonging to 100 genera and 47 families. In our comparative analysis, a clear floristic split from other South American wetlands was shown, except for the Pantanal, which is the closest wetland to the Paraná floodplain and, therefore, could be considered a floristic extension of the Pantanal. The species accumulation curve provides evidence that sampling efforts should be reinforced in order to compile a macrophyte flora census for South America. The high dissimilarity among South American wetlands, together with the lack of an asymptote in our species accumulation curve, indicates that the sampling effort needs to be increased to account for the actual species richness of macrophytes in this region.  相似文献   

2.
Bugenyi  F.W.B. 《Hydrobiologia》2001,458(1-3):33-43
Tropical water-terrestrial ecotones play important roles in regulating the flow of materials from and to land and water ecosystems. Ecotones exist where active interactions between two or more adjacent ecosystems occur with the appearance of processes that do not exist in either of the adjacent ecosystems.They occur naturally depending on the hydrological and geomorphological structure of the location. External and internal processes can influence the origin and persistence of ecotones. Ecotones regulate the landscape mosaic, affect energy flow between adjacent systems and intervene in landscape connectivity.The literature on geological and climatic origins of wetlands and open waters, internal influences on their creation and destruction and, finally, their use by society is reviewed.  相似文献   

3.
The transitions between ecosystems (ecotones) are often biodiversity hotspots, but we know little about the forces that shape them. Today, often sharp boundaries with low diversity are found between terrestrial and aquatic ecosystems. This has been attributed to environmental factors that hamper succession. However, ecosystem properties are often controlled by both bottom-up and top-down forces, but their relative importance in shaping riparian boundaries is not known. We hypothesize that (1) herbivores may enforce sharp transitions between terrestrial and aquatic ecosystems by inhibiting emergent vegetation expansion and reducing the width of the transition zone and (2) the vegetation expansion, diversity, and species turnover are related to abiotic factors in the absence of herbivores, but not in their presence. We tested these hypotheses in 50 paired grazed and ungrazed plots spread over ten wetlands, during two years. Excluding grazers increased vegetation expansion, cover, biomass, and species richness. In ungrazed plots, vegetation cover was negatively related to water depth, whereas plant species richness was negatively related to the vegetation N:P ratio. The presence of (mainly aquatic) herbivores overruled the effect of water depth on vegetation cover increase but did not interact with vegetation N:P ratio. Increased local extinction in the presence of herbivores explained the negative effect of herbivores on species richness, as local colonization rates were unaffected by grazing. We conclude that (aquatic) herbivores can strongly inhibit expansion of the riparian vegetation and reduce vegetation diversity over a range of environmental conditions. Consequently, herbivores enforce sharp boundaries between terrestrial and aquatic ecosystems.  相似文献   

4.
Ecosystems - Climate change and nutrient enrichment are two phenomena impacting coastal ecosystems. In coastal wetlands, mangroves in temperate–tropical ecotones are encroaching on adjacent...  相似文献   

5.
内陆水—陆地交错带的生态功能及其保护与开发前   总被引:84,自引:6,他引:78  
尹澄清 《生态学报》1995,15(3):331-335
内陆水/陆地交错带是陆地和水生态系统的界面区。由于它在系统间的特殊地位,近年来受到国际上生态和环境学界的格外重视。水陆交错带的生态功能有保持生物物种的多样性、拦截和过滤经过此交错带的物质流、有利于鱼类的繁育、稳定毗邻的生态系统、净化水体、减少洪水危害、保持水土等。水陆交错带的保护和科学开发都有待提高,使之在人类和自然的协调发展中发挥更大的作用。  相似文献   

6.
Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.  相似文献   

7.
Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Dams, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah‐Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water‐birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray‐Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983–84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential.  相似文献   

8.
1. The loss of input of leaf litter through clearing of riparian vegetation may result in significant changes to aquatic ecosystems. River red gums (Eucalyptus camaldulensis) surrounding floodplain wetlands in the Murray–Darling Basin, Australia, contribute large quantities of leaf litter, but the quality of this resource may change depending on the timing of inundation. 2. We used experimental mesocosms to test the hypotheses that zooplankton would have a greater abundance with an input of leaf litter and that fewer zooplankton would emerge from egg banks in cleared than forested wetlands. The experiment was carried out in summer/autumn and in spring to test a third hypothesis that zooplankton would respond to changes in the timing of wetland inundation as a result of river regulation. 3. In summer/autumn, leaf litter reduced zooplankton abundance by 89% at the beginning of the experiment through its influence on water quality. Only a few taxa (Polyarthra spp., Colurella spp. and the cladoceran Family Moinidae) responded positively to leaf litter when water quality improved later in the experiment, indicating a switch in the role of leaf litter from a non‐trophic to a trophic pathway. 4. In spring, microcrustaceans emerged in smaller numbers from sediment sourced from cleared compared to forested wetlands, reflecting different communities in these two wetland types and/or disturbances to the sediment that interfere with emergence. 5. Although leaf litter appears not to be an important resource for zooplankton in floodplain wetlands, riparian clearing may have lasting effects on future emerging zooplankton communities. Additionally, river regulation may have considerable impacts on the influence of leaf litter on zooplankton, which has implications for the management of floodplain river systems.  相似文献   

9.
Floodplains represent ecotones with frequent high productivity mediated by regular shifts between aquatic and terrestrial ecosystems. We examined interaction along this intercept on a seasonal floodplain of the Okavango Delta, Botswana. We focused on the zooplankton communities in order to gain knowledge on the energetic and stoichiometric interplay of the two systems involved. A conspicuous horizontal migration and pulsed biomass increase was found for the dominant zooplankton species (Moina micrura, Daphnia laevis, Mesocyclops leuckarti), culminating in truly extreme numbers before a final collapse. There was a distinct succession in the peak abundance of these species, apparently subsidized by hatchlings from the seed bank of resting eggs as the flood proceeded over the savannah. The high productivity of the system seems to be driven by a strong coupling of the terrestrial and aquatic phase of the floodplains via a mobilization of terrestrially derived nutrients, through nutrients from grazing ungulates during dry periods. Carbon of terrestrial origin, however, appeared to be of minor importance for the planktonic part of the food web. Handling editor: S. Dodson  相似文献   

10.
The boundaries of river systems: the metazoan perspective   总被引:9,自引:1,他引:8  
1. This overview of metazoans associated with the riparian/groundwater interface focuses on the fauna inhabiting substratum interstices within the stream bed and in alluvial aquifers beneath the floodplain. The objective is to integrate knowledge of habitat conditions and ecology of the interstitial fauna into a broad spatiotemporal perspective of lotic ecosystems. 2. Most aquatic metazoans of terrestrial ancestry, secondarily aquatic forms including insects and water mites (Hydracarina), are largely confined to surface waters (epigean), most of the time penetrating only the superficial interstices of the stream bed. 3. Primary aquatic metazoans include crustaceans and other groups whose entire evolutionary histories took place in water. Some species are epigean, whereas other members of the primary aquatic fauna are true subterranean forms (hypogean ) , residing deep within the stream bed and in alluvial aquifers some distance laterally from the channel. 4. The hypogean/epigean affinities of interstitial animals are reflected in repetitive gradients of species distribution patterns along vertical (depth within the stream bed), longitudinal (riffle/pool), and lateral (across the floodplain) spatial dimensions, as well as along recovery trajectories following floods (temporal dimension). 5. Fluvial dynamics and sediment characteristics interact to determine hydraulic conductivity, oxygen levels, pore space, particle size heterogeneity, organic content and other habitat conditions within the interstitial milieu. 6. Multidimensional environmental gradients occur at various scales across riparian/groundwater boundary zones. The spatiotemporal variability of hydrogeomorphological processes plays an important role in determining habitat heterogeneity, habitat stability, and connectivity between habitat patches, thereby structuring biodiversity patterns across the riverine landscape. 7. The erosive action of flooding maintains a diversity of hydrarch and riparian successional stages in alluvial floodplains. The patchy distribution patterns of interstitial communities at the floodplain scale reflect, in part, the spatial heterogeneity engendered by successional processes. 8. Interstitial metazoans engage in passive and active movements between surface waters and ground waters, between aquatic and riparian habitats, and between different habitat types within the lotic system. Some of these are extensive migrations that involve significant exchange of organic matter and energy between ecosystem compartments. 9. The generally high resilience of lotic ecosystems to disturbance is attributable, in part, to high spatiotemporal heterogeneity. Habitat patches less affected by a particular perturbation may serve as ’refugia ‘; from which survivors recolonize more severely affected areas. Mechanisms of refugium use may also occur within habitats, as, for example, through ontogenetic shifts in microhabitat use. Rigorous investigations of interstitial habitats as refugia should lead to a clearer understanding of the roles of disturbance and stochasticity in lotic ecosystems. 10. Development of realistic ’whole river ‘; food webs have been constrained by the exclusion of interstitial metazoans, which may in fact contribute the majority of energy flow in lotic ecosystems. A related problem is failure to include groundwater/riparian habitats as integral components of alluvial rivers. A conceptual model is presented that integrates groundwater and riparian systems into riverine food webs and that reflects the spatiotemporal complexity of the physical system and connectivity between different components. 11. Interstitial metazoans also serve as ’ecosystem engineers, ‘; by influencing the availability of resouces to other species and by modifying habitat conditions within the sediment. For example, by grazing on biofilm, interstitial animals may markedly stimulate bacterial growth rates and nutrient dynamics. 12. Although there has been a recent surge of interest in the role of interstitial animals in running waters, the knowledge gaps are vast. For example, basic environmental requirements of the majority of groundwater metazoans remain uninvestigated. Virtually nothing is known regarding the role of biotic interactions in structuring faunal distribution patterns across groundwater/riparian boundary zones. Interstitial metazoans may contribute significantly to the total productivity and energy flow of the biosphere, but such data are not available. Nor are sufficient data available to determine the contribution of groundwater animals to estimates of global biodiversity. 13. Effective ecosystem management must include groundwater/riparian ecotones and interstitial metazoans in monitoring and restoration efforts. Evidence suggests that a ’connected ‘; groundwater/riparian system provides natural pollution control, prevents clogging of sediment interstices and maintains high levels of habitat heterogeneity and successional stage diversity. River protection and restoration should maintain or re-establish at least a portion of the natural fluvial dynamics that sustains the ecological integrity of the entire riverine–floodplain–aquifer ecosystem. Keywords: groundwater/riparian ecotones, hyporheic habitat, epigean, hypogean, interstitial fauna, biodiversity, food webs  相似文献   

11.
M. M. Coelho  M. Zalewski 《Hydrobiologia》1995,303(1-3):223-228
In most types of freshwater ecosystems fish diversity depends greatly on land/inland water ecotones. So, to maintain biodiversity of fish communities in inland waters, management and restoration of aquatic terrestrial ecotones will be an important tool. However, to provide a scientific background for such conservation activities, it will be desirable to test the importance of different types of ecotones in structuring and maintaining the genetic diversity of fish populations. The relevance of population genetics data to ecotone studies can only be understood in an ecological context as evolution is a function of environment. We suggest that as ecotone complexity increases opportunities for survival of individuals, improving trophic conditions and spatial habitat heterogeneity, so the population size and variation increase with increased genetic diversity and vulnerability to environment changes decreases.  相似文献   

12.
The aquatic macrophytic vegetation constituting the wetlands situated along the coast of Lake Victoria provides valuable services to both local and regional communities as well as an important ecological function through the transition between terrestrial and aquatic ecosystems. The wetland vegetation is typically rooted in the substrate on the landward side of the lake, but forms a floating mat towards the middle of the wetland and at the wetland/lake interface. Cyperus papyrus and Miscanthidium violaceum vegetation typically dominate the permanently inundated wetland areas along most of the shores of Lake Victoria. Due to the prevailing climatic and hydrological catchment conditions, these macrophytic plants (papyrus in particular) tend to exhibit high net productivity and nutrient uptake which strongly influences both wetland status and lake water quality. In addition, these wetlands provide important economic livelihoods for the local populations. The integrity and physical structure of these wetlands strongly influences their associated mass transport mechanisms (water, nutrients and carbon) and ecosystem processes. Wetland degradation in Africa is an increasing problem, as these ecosystems are relied upon to attenuate industrial, urban and agricultural pollution and supply numerous services and resources. In an integrated project focused on the wetlands of Lake Victoria, the ecological and economic aspects of littoral wetlands were examined and new instruments developed for their sustainable management.  相似文献   

13.
Tropical floodplains are one of the most productive ecosystems on earth. Studies on floodplain productivity have primarily focused on trees and macrophytes, rather than algae, due to their greater biomass. However, epiphyton—algae and bacteria attached to the submerged portion of aquatic macrophytes—is a major source of energy in many tropical floodplains. Epiphyton productivity rates are unknown for most tropical floodplain wetlands, and spatial variability is not well understood. In this study, we measured primary productivity of epiphyton in Kakadu National Park in northern Australia. We estimated the relative contribution of epiphyton to aquatic production (epiphyton, + phytoplankton + macrophytes). We sampled sites dominated by different macrophyte structural types: vertical emerging grasses, horizontal emerging grasses, submerged macrophytes, and macrophytes with floating leaves. Epiphyton productivity was highly influenced by the structural type of the macrophyte. Highest potential productivity per weight was measured from epiphyton growing on macrophytes with floating leaves and horizontal grasses (1.52 ± 0.53 and 1.82 ± 0.61 mgC/dw g epiphyton/h, respectively) and lowest in submerged macrophytes and vertical grasses (0.57 ± 0.26 and 0.66 ± 0.47 mgC/dw g epiphyton/h, respectively). When considering the areal biomass of the macrophyte and the amount of epiphyton attached, epiphyton on horizontal grasses and submerged macrophytes had productivity values approximately ten times higher (45–219 mgC/m2/d) compared to those on vertical grasses and macrophytes with floating leaves (2–18 mgC/m2/d). Epiphyton contributed between 2 to 13 percent to the aquatic production of these tropical floodplain wetlands.  相似文献   

14.
溪流粗木质残体的生态学研究进展   总被引:18,自引:3,他引:15  
粗木质残体(CWD)是森林或溪流生态系统中残存的超过一定直径大小的站杆、倒木、枝桠及根系等死木质物的总称,溪流CWD对于溪流生态系统的稳定,水生生物多样性,河槽形态及其变化过程有着重要的作用。对溪流CWD的产生和分类,溪流CWD对于溪流生态系统的稳定,水生生物多样性,河槽形态及其变化过程有着重要的作用。对溪流CWD的产生和分类,溪流CWD贮量,分布和动态,以及溪流CWD的功能和管理分别进行了总结,并指出应尽快在国内开展溪流CWD的研究和管理。  相似文献   

15.
湿地氮素传输过程研究进展   总被引:32,自引:3,他引:29  
综述了湿地氮素传输过程的研究进展。湿地氮素传输过程包括物理过程、化学过程和生物过程 ,与土壤、植物的发生、发育紧密联系在一起 ,并形成了空气 -水 -土 -生命系统中物质循环和能量流动的复杂网络。湿地硝态氮的淋失直接威胁着湿地地下水水质安全 ,N2 O源汇转变受土壤和水体等环境因子的制约 ,氨挥发则与水体 p H值密切相关排放。湿地氮素的化学转化过程是矿质养分供给和 N2 O产生的主要机制 ,受环境因子和人类活动干扰的影响 ;动力学模型可用于描述氮素的化学转化过程。湿地植物的吸收和累积以及微生物的分解过程是湿地氮素循环的重要环节。最后分析了当前国内外研究中存在的不足 ,并对未来研究的重点领域进行了展望  相似文献   

16.
探讨湿地植物根系碳(C)、氮(N)浓度及其化学计量关系对于进一步阐明湿地生态系统细根周转及养分循环具有重要意义。基于Pregitzer的根序分级法分析了鄱阳湖南矶湿地22种植物根系全C和全N浓度。结果表明:根系全C、全N浓度及C/N值变化范围分别为:267.15—423.22 mg/g、2.22—31.05 mg/g和2.27—71.78。1—2级根全C、全N及C/N之间具有显著相关性,但与3级根不相关。根系全C和C/N随根序的升高而增加,全N则随根序升高而降低,根系分级在湿地植物C、N化学计量关系研究中十分必要。根序、物种及其交互作用均显著影响研究区植物根系的全C、全N浓度及C/N计量关系。根系C/N化学计量关系在不同生境间未发生显著变化,表明群落尺度下的C/N稳定性高于个体水平。  相似文献   

17.
Nutrient dynamics at the interface between surface waters and groundwaters   总被引:18,自引:0,他引:18  
1. The surface water/groundwater (SW/GW) interface is a crucial control point for lateral nutrient fluxes between uplands and aquatic ecosystems and for upstream/downstream (longitudinal) processes in lotic ecosystems. 2. Hydrological and biogeochemical dynamics of the SW/GW ecotone are linked to the degree of channel constraint and the sediment characteristics of the floodplain and stream bed. 3. The availability of specific chemical forms of electron donors and electron acceptors affects the spatial distribution of biogeochemical processes at the SW/GW interface. Temporal change in discharge is also a major factor affecting the rate and extent of these processes. 4. The magnitude of SW/GW interactions in lotic ecosystems is predicted to be a major determinant of solute retention. Channel morphology, stream bed composition and discharge are predicted to be important controls on SW/GW interactions. 5. Interdisciplinary research involving hydrologists, geomorphologists, aquatic ecologists, microbial ecologists and landscape ecologists is needed to further our present understanding of this critical interface linking terrestrial and aquatic ecosystems.  相似文献   

18.
1. Globally, tropical floodplains are highly productive ecosystems. This is largely because of predictable seasonal rains providing replenishing floodwaters that stimulate nutrient turnover which, in turn, substantially boosts both primary and secondary productivity. This is associated with concomitant shifts in the types of primary producers and associated food webs. 2. The Magela Creek floodplain on Kakadu National Park in northern Australia is one of the most studied tropical freshwater ecosystems in Australia and provides an opportunity to collate and examine information on organic carbon sources and pathways through food webs to gain a fundamental understanding of how these systems may function. 3. We reviewed biophysical information published since the early 1980s to construct an assessment of the carbon resources for the channel and floodplain. 4. We conclude that macrophytes, largely in the form of grasses and aquatic plants, produce the greatest above‐ground biomass on the Magela Creek floodplain. Although macrophytes provide suitable substrata for the attachment of epiphytes, they do not appear to be an important carbon source for aquatic consumers themselves. Nevertheless, macrophytes do provide critical seasonal food and habitat structure for other producers and consumers on the floodplain, such as the abundant magpie geese. 5. We developed a generalised conceptual food web and carbon budget contrasting the ‘wet’ and ‘dry’ seasons for the Magela Creek system, as a representative of tropical seasonal floodplain systems. 6. Our conceptual model of tropical floodplains indicates that knowledge of the seasonal and spatial links and exchanges between the floodplain and the river is critical in understanding ecosystem function.  相似文献   

19.
  1. Saltmarsh‐mangrove ecotones occur at the boundary of the natural geographic distribution of mangroves and salt marshes. Climate warming and species invasion can also drive the formation of saltmarsh‐mangrove mixing communities. How these coastal species live together in a “new” mixed community is important in predicting the dynamic of saltmarsh‐mangrove ecosystems as affected by ongoing climate change or human activities. To date, the understanding of species interactions has been rare on adult species in these ecotones.
  2. Two typical coastal wetlands were selected as cases to understand how mangrove and saltmarsh species living together in the ecotones. The leaves of seven species were sampled from these coastal wetlands based on their distribution patterns (living alone or coexisting) in the high tidal zone, and seven commonly used functional traits of these species were analyzed.
  3. We found niche separation between saltmarsh and mangrove species, which is probably due to the different adaptive strategies they adopted to deal with intertidal environments.
  4. Weak interactions between coexisting species were dominated in the high tidal zone of the two saltmarsh‐mangrove communities, which could be driven by both niche differentiation and neutral theory.
  5. Synthesis. Our field study implies a potential opportunity to establish a multispecies community in the high tidal zone of saltmarsh‐mangrove ecotones, where the sediment was characterized by low salinity and high nitrogen.
  相似文献   

20.
SUMMARY 1. Research has shown that fish influence the structure and processes of aquatic ecosystems, but replicated studies at the ecosystem level are rare as are those involving wetlands. Some wetlands of the Prairie Pothole Region (PPR) of North America support fish communities dominated by fathead minnows ( Pimephales promelas ) while others are fishless, providing an opportunity to assess the influence of these fish on wetland ecosystems. Additionally, many wetlands have previously been drained and subsequently restored, but the success of these efforts is poorly known and restoration may be impeded by the presence of fish.
2. We assessed the effects of fathead minnows and drainage by studying 20 semipermanent, prairie wetlands in Minnesota from 1996 to 1999. We used a 2 × 2 factorial design to examine the effects of presence and absence of minnows and drainage history (restored/never drained) on the abundance of aquatic invertebrates and amphibians, as well as on the concentrations of chlorophyll a , total phosphorus, total nitrogen and turbidity in the water column.
3. Results showed that fathead minnows are an important determinant of many biotic and abiotic characteristics of wetlands in the eastern PPR. Wetlands with fathead minnows had fewer aquatic insects, large- and small-bodied cladocerans, calanoid copepods, ostracods and larval tiger salamanders, as well as a higher abundance of corixids and greater turbidity and chlorophyll a . A higher concentration of phosphorus in restored basins was the only consistent effect of past management.
4. Fathead minnows usually dominate fish communities in eastern PPR wetlands where fish are present, and can have several strong ecosystem effects. While abiotic variables are important determinants of ecosystem structure in prairie wetlands, they can be strongly influenced by biotic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号