首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Toll-like receptors (TLRs) are key molecular sensors used by the mammalian innate immune system to detect microorganisms. Although TLR functions in colonic immune homeostasis and tolerance to commensal bacteria have been intensively researched, the precise roles of different TLRs in response to pathogen infection in the gut remain elusive. Peyer patches are the major entrance of Salmonella infection and antigen transportation in intestine. Here, we report that, in contrast to TLR5 as a “carrier of Salmonella,” TLR11 works as a “blocker of Salmonella” to prevent highly invasive Salmonella from penetrating into the murine Peyer patches and spreading systemically. TLR11 plays an important role in mediating TNF-α induction and systemic inflammation in response to Salmonella infection. Remarkably, in mice lacking TLR11, apparent hemorrhages at Peyer patches are induced by highly invasive Salmonella, a phenotype resembling human Salmonella infection. Therefore, our results indicate a potentially important role for TLR11 in preventing murine intestinal infection and modulating antigen transportation in the gut and imply an important role for various TLRs in cooperation with tight control of pathogens penetrating into Peyer patches. The TLR11 knock-out mouse can serve as a good animal model to study Salmonella infection.  相似文献   

2.
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5′-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5′-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5′-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5′-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5′-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5′-tRNA half species into EVs. The EV-5′-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5′-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of “immune activators” to 5′-tRNA half molecules.

Although Toll-like receptors (TLRs) play a crucial role in the innate immune response, their endogenous ligands have not been fully explored. This study identifies tRNA half-molecules as abundant TLR ligands which are upregulated upon infection by mycobacteria and activate TLR7.  相似文献   

3.
4.
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.  相似文献   

5.
Signaling pathways from TLRs are mediated by the Toll/IL-1R (TIR) domain-containing adaptor molecules. TNF receptor-associated factor (TRAF) 6 is thought to activate NF-kappaB and MAPKs downstream of these TIR domain-containing proteins to induce production of inflammatory cytokines. However, the precise role of TRAF6 in signaling from individual TLRs has not been appropriately addressed. We analyzed macrophages from TRAF6-deficient mice and made the following observations. In the absence of TRAF6, 1) ligands for TLR2, TLR5, TLR7, and TLR9 failed to induce activation of NF-kappaB and MAPKs or production of inflammatory cytokines; 2) TLR4 ligand-induced cytokine production was remarkably reduced and activation of NF-kappaB and MAPKs was observed, albeit with delayed kinetics; and 3) in contrast with previously reported findings, TLR3 signaling was not affected. These results indicate that TRAF6 is essential for MyD88-dependent signaling but is not required for TIR domain-containing adaptor-inducing IFN-beta (TRIF)-dependent signaling.  相似文献   

6.
Subgroups of patients with chronic lymphocytic leukemia (CLL) have distinct expression profiles of Toll-like receptor (TLR) pathway–associated genes. To test the hypothesis that signaling through innate immunity receptors may influence the behavior of the malignant clone, we investigated the functional response triggered by the stimulation of TLRs and NOD2 in 67 CLL cases assigned to different subgroups on the basis of immunoglobulin heavy variable (IGHV ) gene usage, IGHV gene mutational status or B-cell receptor (BcR) stereotypy. Differences in the induction of costimulatory molecules and/or apoptosis were observed in mutated versus unmutated CLL. Different responses were also identified in subsets with stereotyped BcRs, underscoring the idea that “subset-biased” innate immunity responses may occur independently of mutational status. Additionally, differential modulation of kinase activities was induced by TLR stimulation of different CLL subgroups, revealing a TLR7-tolerant state for cases belonging to stereotyped subset #4. The distinct patterns of TLR/NOD2 functional activity in cells from CLL subgroups defined by the molecular features of the clonotypic BcRs might prove relevant for elucidating the immune mechanisms underlying CLL natural history and for defining subgroups of patients who might benefit from treatment with specific TLR ligands.  相似文献   

7.
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation.  相似文献   

8.

Background

Toll-like receptors (TLRs) are critical components in the regulation of pulmonary immune responses and the recognition of respiratory pathogens such as Mycobacterium Tuberculosis (M.tb). Through examination of human alveolar macrophages this study attempts to better define the expression profiles of TLR2, TLR4 and TLR9 in the human lung compartment which are as yet still poorly defined.

Methods

Sixteen healthy subjects underwent venipuncture, and eleven subjects underwent additional bronchoalveolar lavage to obtain peripheral blood mononuclear and bronchoalveolar cells, respectively. Surface and intracellular expression of TLRs was assessed by fluorescence-activated cell sorting and qRT-PCR. Cells were stimulated with TLR-specific ligands and cytokine production assessed by ELISA and cytokine bead array.

Results

Surface expression of TLR2 was significantly lower on alveolar macrophages than on blood monocytes (1.2 ± 0.4% vs. 57 ± 11.1%, relative mean fluorescence intensity [rMFI]: 0.9 ± 0.1 vs. 3.2 ± 0.1, p < 0.05). The proportion of TLR4 and TLR9-expressing cells and the rMFIs of TLR4 were comparable between alveolar macrophages and monocytes. The surface expression of TLR9 however, was higher on alveolar macrophages than on monocytes (rMFI, 218.4 ± 187.3 vs. 4.4 ± 1.4, p < 0.05) while the intracellular expression of the receptor and the proportion of TLR9 positive cells were similar in both cell types. TLR2, TLR4 and TLR9 mRNA expression was lower in bronchoalveolar cells than in monocytes.Pam3Cys, LPS, and M.tb DNA upregulated TLR2, TLR4 and TLR9 mRNA in both, bronchoalveolar cells and monocytes. Corresponding with the reduced surface and mRNA expression of TLR2, Pam3Cys induced lower production of TNF-α, IL-1β and IL-6 in bronchoalveolar cells than in monocytes. Despite comparable expression of TLR4 on both cell types, LPS induced higher levels of IL-10 in monocytes than in alveolar macrophages. M.tb DNA, the ligand for TLR9, induced similar levels of cytokines in both cell types.

Conclusion

The TLR expression profile of autologous human alveolar macrophages and monocytes is not identical, therefore perhaps contributing to compartmentalized immune responses in the lungs and systemically. These dissimilarities may have important implications for the design and efficacy evaluation of vaccines with TLR-stimulating adjuvants that target the respiratory tract.  相似文献   

9.
Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-kappaB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.  相似文献   

10.
Virtually all of the elements of Mycobacterium tuberculosis (Mtb) pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6′-dimycolate (TDM/cord factor). TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88)-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs), implying involvement of toll-like receptors (TLRs). However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO), a class A scavenger receptor, is utilized preferentially to “tether” TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-κB)-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA), which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-κB signaling to occur. Consistent with these observations, macrophages from MARCO−/− or MARCO−/−SRA−/− mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2) and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow–derived) may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO−/− mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding receptors for TDM, explain the differential response to TDM of various macrophage populations, which differ in their expression of the scavenger receptors, and identify MARCO as a novel component required for TLR signaling.  相似文献   

11.
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.  相似文献   

12.
Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7–9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.  相似文献   

13.
Interferons (IFNs) are a critical component of the first line of antiviral defense. The activation of Toll-like receptors (TLRs) expressed by dendritic cells triggers different signaling cascades that result in the production of large amounts of IFNs. However, the functional consequences of TLR activation and differential IFN production in specific cell populations other than antigen-presenting cells have not yet been fully elucidated. In this study, we investigated TLR expression and polarization in airway epithelial cells (AECs) and the consequences of TLR agonist stimulation for the production of type I (IFN-α/β) and type III (IFN-λ) IFNs. Our results show that the pattern of expression and polarization of all TLRs in primary AEC cultures mirrors that of the human airways ex vivo and is receptor specific. The antiviral TLRs (TLR3, TLR7, and TLR9) are mostly expressed on the apical cell surfaces of epithelial cells in the human trachea and in primary polarized AECs. Type III IFN is the predominant IFN produced by the airway epithelium, and TLR3 is the only TLR that mediates IFN production by AECs, while all TLR agonists tested are capable of inducing AEC activation and interleukin-8 production. In response to influenza virus infection, AECs can produce IFN-λ in an IFNAR- and STAT1-independent manner. Our results emphasize the importance of using primary well-differentiated AECs to study TLR and antiviral responses and provide further insight into the regulation of IFN production during the antiviral response of the lung epithelium.  相似文献   

14.

Background

In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed.

Principal Findings

Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7.

Conclusions/Significance

Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.  相似文献   

15.
Liang Z  Wu S  Li Y  He L  Wu M  Jiang L  Feng L  Zhang P  Huang X 《PloS one》2011,6(8):e23346
Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I:C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I:C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I:C)-inhibited replication of DENV2. The poly(I:C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I:C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I:C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.  相似文献   

16.
DC deliver information regulating trafficking of effector T cells along T-cell priming. However, the role of pathogen-derived motives in the regulation of movement of T cells has not been studied. We hereinafter report that amount of M tuberculosis in the adjuvant modulates relocation of PLP139-151 specific T cells. In the presence of a low dose of M tuberculosis in the adjuvant, T cells (detected by CDR3 BV-BJ spectratyping, the so-called “immunoscope”) mostly reach the spleen by day 28 after immunization (“late relocation”) in the SJL strain, whereas T cells reach the spleen by d 14 with a high dose of M tuberculosis (“early relocation”). The C57Bl/6 background confers a dominant “early relocation” phenotype to F1 (SJL×C57Bl/6) mice, allowing early relocation of T cells in the presence of low dose M tuberculosis. A single non-synonymous polymorphism of TLR2 is responsible for “early/late” relocation phenotype. Egress of T lymphocytes is regulated by TLR2 expressed on T cells. Thus, pathogens engaging TLR2 on T cells regulate directly T-cell trafficking, and polymorphisms of TLR2 condition T-cell trafficking upon a limiting concentration of ligand.  相似文献   

17.
The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs). In addition, LNFPIII-NGC preferentially induced the production of Th2 “favoring” chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 “favoring” chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1–3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1–3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK) axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo therapeutic effect of LNFPIII-NGC treatment for inflammation based diseases.  相似文献   

18.
Ligands of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) stimulate innate and adaptive immune responses and are considered as potent adjuvants. Combinations of ligands might act in synergy to induce stronger and broader immune responses compared to stand-alone ligands. Alphaviruses stimulate endosomal TLRs 3, 7 and 8 as well as the cytoplasmic PRR MDA-5, resulting in induction of a strong type I interferon (IFN) response. Bacterial flagellin stimulates TLR5 and when delivered intracellularly the cytosolic PRR NLRC4, leading to secretion of proinflammatory cytokines. Both alphaviruses and flagellin have independently been shown to act as adjuvants for antigen-specific antibody responses. Here, we hypothesized that alphavirus and flagellin would act in synergy when combined. We therefore cloned the Salmonella Typhimurium flagellin (FliC) gene into an alphavirus replicon and assessed its adjuvant activity on the antibody response against co-administered antigen. In mice immunized with recombinant alphavirus, antibody responses were greatly enhanced compared to soluble FliC or control alphavirus. Both IgG1 and IgG2a/c responses were increased, indicating an enhancement of both Th1 and Th2 type responses. The adjuvant activity of FliC-expressing alphavirus was diminished but not abolished in the absence of TLR5 or type I IFN signaling, suggesting the contribution of several signaling pathways and some synergistic and redundant activity of its components. Thus, we have created a recombinant adjuvant that stimulates multiple signaling pathways of innate immunity resulting in a strong and broad antibody response.  相似文献   

19.
Macrophages in infected tissues may sense microbial molecules that significantly alter their metabolism. In a seeming paradox, these critical host defense cells often respond by increasing glucose catabolism while simultaneously storing fatty acids (FA) as triglycerides (TAG) in lipid droplets. We used a load-chase strategy to study the mechanisms that promote long term retention of TAG in murine and human macrophages. Toll-like receptor (TLR)1/2, TLR3, and TLR4 agonists all induced the cells to retain TAG for ≥3 days. Prolonged TAG retention was accompanied by the following: (a) enhanced FA uptake and FA incorporation into TAG, with long lasting increases in acyl-CoA synthetase long 1 (ACSL1) and diacylglycerol acyltransferase-2 (DGAT2), and (b) decreases in lipolysis and FA β-oxidation that paralleled a prolonged drop in adipose triglyceride lipase (ATGL). TLR agonist-induced TAG storage is a multifaceted process that persists long after most early pro-inflammatory responses have subsided and may contribute to the formation of “lipid-laden” macrophages in infected tissues.  相似文献   

20.

Background

Toll-like receptors (TLRs) are among the first-line sentinels for immune detection and responsiveness to pathogens. The TLR2 subfamily of TLRs (TLR1, TLR2, TLR6) form heterodimers with each other and are thus able to recognize a broad range of components from several microbes such as yeast, Gram-positive bacteria and protozoa. Until now, TLR2 activation by bacterial ligands has long been associated with pro-inflammatory cytokines but not type I interferon responses.

Methodology/Principal Findings

Using a variety of transgenic mice, here we provide in vivo and in vitro data showing that TLR2 activation does in fact induce interferon-beta and that this occurs via MyD88-IRF1 and -IRF7 pathways. Interestingly, by microscopy we demonstrate that although a cell surface receptor, TLR2 dependent induction of type I interferons occurs in endolysosomal compartments where it is translocated to upon ligand engagement. Furthermore, we could show that blocking receptor internalization or endolysosomal acidification inhibits the ability of TLR2 to trigger the induction type I interferon but not pro-inflammatory responses.

Conclusion/Significance

The results indicate that TLR2 activation induces pro-inflammatory and type I interferon responses from distinct subcellular sites: the plasma membrane and endolysosomal compartments respectively. Apart from identifying and characterizing a novel pathway for induction of type I interferons, the present study offers new insights into how TLR signaling discriminates and regulates the nature of responses to be elicited against extracellular and endocytosed microbes. These findings may also have clinical implication. Excessive production of pro-inflammatory cytokines and type I IFNs following activation of TLRs is a central pathologic event in several hyper-inflammatory conditions. The discovery that the induction of pro-inflammatory and type I IFN responses can be uncoupled through pharmacological manipulation of endolysosomal acidification suggests new avenues for potential therapeutic intervention against inflammations and sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号