首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Osteosarcoma is the most common primary bone tumor in children and adults. Despite improved prognosis, resistance to chemotherapy remains responsible for failure of osteosarcoma treatment. The identification of the molecular signals that contribute to the aberrant osteosarcoma cell growth may provide clues to develop new therapeutic strategies for chemoresistant osteosarcoma. Here we show that the expression of ErbB3 is increased in human osteosarcoma cells in vitro. Tissue microarray analysis of tissue cores from osteosarcoma patients further showed that the ErbB3 protein expression is higher in bone tumors compared to normal bone tissue, and is further increased in patients with recurrent disease or soft tissue metastasis. In murine osteosarcoma cells, silencing ErbB3 using shRNA decreased cell replication, cell migration and invasion, indicating that ErbB3 contributes to tumor cell growth and invasiveness. Furthermore, ErbB3 silencing markedly reduced tumor growth in a murine allograft model in vivo. Immunohistochemal analysis showed that the reduced tumor growth induced by ErbB3 silencing in this model resulted from decreased cell osteosarcoma cell proliferation, supporting a role of ErbB3 in bone tumor growth in vivo. Taken together, the results reveal that ErbB3 expression in human osteosarcoma correlates with tumor grade. Furthermore, silencing ErbB3 in a murine osteosarcoma model results in decreased cell growth and invasiveness in vitro, and reduced tumor growth in vivo, which supports the potential therapeutic interest of targeting ErbB3 in osteosarcoma.  相似文献   

3.
Cervical cancer is one of the most common cancers in women worldwide, being high-risk group the HPV infected, the leading etiological factor. The raf kinase inhibitory protein (RKIP) has been associated with tumor progression and metastasis in several human neoplasms, however its role on cervical cancer is unclear. In the present study, 259 uterine cervix tissues, including cervicitis, cervical intraepithelial lesions and carcinomas, were analyzed for RKIP expression by immunohistochemistry. We found that RKIP expression was significantly decreased during malignant progression, being highly expressed in non-neoplastic tissues (54% of the samples; 73/135), and expressed at low levels in the cervix invasive carcinomas (∼15% (19/124). Following in vitro downregulation of RKIP, we observed a viability and proliferative advantage of RKIP-inhibited cells over time, which was associated with an altered cell cycle distribution and higher colony number in a colony formation assay. An in vitro wound healing assay showed that RKIP abrogation is associated with increased migratory capability. RKIP downregulation was also associated with an increased vascularization of the tumors in vivo using a CAM assay. Furthermore, RKIP inhibition induced cervical cancer cells apoptotic resistance to cisplatin treatment. In conclusion, we described that RKIP protein is significantly depleted during the malignant progression of cervical tumors. Despite the lack of association with patient clinical outcome, we demonstrate, in vitro and in vivo, that loss of RKIP expression can be one of the factors that are behind the aggressiveness, malignant progression and chemotherapy resistance of cervical cancer.  相似文献   

4.
Glioblastoma (GBM) tumor cells exhibit drug resistance and are highly infiltrative. GBM stem cells (GSCs), which have low proliferative capacity are thought to be one of the sources of resistant cells which result in relapse/recurrence. However, the molecular mechanisms regulating quiescent-specific tumor cell biology are not well understood. Using human GBM cell lines and patient-derived GBM cells, Oregon Green dye retention was used to identify and isolate the slow-cycling, quiescent-like cell subpopulation from the more proliferative cells in culture. Sensitivity of cell subpopulations to temozolomide and radiation, as well as the migration and invasive potential were measured. Differential expression analysis following RNAseq identified genes enriched in the quiescent cell subpopulation. Orthotopic transplantation of cells into mice was used to compare the in vivo malignancy and invasive capacity of the cells. Proliferative quiescence correlated with better TMZ resistance and enhanced cell invasion, in vitro and in vivo. RNAseq expression analysis identified genes involved in the regulation cell invasion/migration and a three-gene signature, TGFBI, IGFBP3, CHI3L1, overexpressed in quiescent cells which correlates with poor GBM patient survival.  相似文献   

5.
Long noncoding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors that are involved in tumorigenesis and chemotherapy drug resistance. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes an lncRNA, and decreased MEG3 expression plays an important role in multiple cancers. However, its biological role in the development of the chemoresistance phenotype of human lung adenocarcinoma (LAD) is unknown. This study aimed to observe the expression of MEG3 in LAD and to evaluate its biological role and clinical significance in the resistance of LAD cells to cisplatin. MEG3 expression was markedly decreased in cisplatin-resistant A549/DDP cells compared with parental A549 cells as shown by an lncRNA microarray. MEG3 overexpression in A549/DDP cells increased their chemosensitivity to cisplatin both in vitro and in vivo by inhibiting cell proliferation and inducing apoptosis. By contrast, MEG3 knockdown in A549 cells decreased the chemosensitivity. Moreover, MEG3 was decreased in cisplatin-insensitive LAD tissues while p53 protein levels were decreased and Bcl-xl protein levels increased. Furthermore, patients with lower levels of MEG3 expression showed worse responses to cisplatin-based chemotherapy. These findings demonstrate that MEG3 is significantly downregulated in LAD and partially regulates the cisplatin resistance of LAD cells through the control of p53 and Bcl-xl expression. Thus, MEG3 may represent a new marker of poor response to cisplatin and could be a potential therapeutic target for LAD chemotherapy.  相似文献   

6.
Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate. Ubiquitin, which is a small, highly conserved protein expressed in all eukaryotic cells, can be covalently linked to certain target proteins to mark them for degradation by the ubiquitin-proteasome system. Previous studies highlight the essential role of Ubiquitin B (UbB) and UbB-dependent proteasomal protein degradation in histone deacetylase inhibitor (HDACi) -induced tumor selectivity. We hypothesized that UbB plays a critical role in the function of cervical cancer stem cells. We measured endogenous UbB levels in mammospheres in vitro by real-time PCR and Western blotting. The function of UbB in cancer stem-like cells was assessed after knockdown of UbB expression in prolonged Trichostatin A-selected HeLa cells (HeLa/TSA) by measuring in vitro cell proliferation, cell apoptosis, invasion, and chemotherapy resistance as well as by measuring in vivo growth in an orthotopic model of cervical cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human cervical cancer xenografts after UbB silencing. We found that HeLa/TSA were resistant to chemotherapy, highly expressed the UbB gene and the stem cell markers Sox2, Oct4 and Nanog. These cells also displayed induced differentiation abilities, including enhanced migration/invasion/malignancy capabilities in vitro and in vivo. Furthermore, an elevated expression of UbB was shown in the tumor samples of chemotherapy patients. Silencing of UbB inhibited tumorsphere formation, lowered the expression of stem cell markers and decreased cervical xenograft growth. Our results demonstrate that UbB was significantly increased in prolonged Trichostatin A-selected HeLa cells and it played a key role in the maintenance of cervical cancer stem-like cells.  相似文献   

7.
Lung cancer is notorious for high morbidity and mortality around the world. Interleukin (IL)-8, a proinflammatory chemokine with tumorigenic and proangiogenic effects, promotes lung cancer cells growth and migration and contributes to cell aggressive phenotypes. Integrin αvβ6 is a receptor of transmembrane heterodimeric cell surface adhesion, and its overexpression correlates with poor survival from non–small cell lung cancer. However, the cross talk between αvβ6 and IL-8 in lung cancer has not been characterized so far. Herein, human lung cancer samples were analyzed, and it revealed that the immunohistochemical and mRNA expression of integrin αvβ6 was significantly correlated with the expression of IL-8. Furthermore, in vitro, integrin αvβ6 increased cell proliferation, migration, and invasion by impairing the expressions of MMP-2 and MMP-9 and inhibited cell apoptosis in human lung cancer cells A549 and H460. In addition, integrin αvβ6 upregulated IL-8 expression through activating MAPK/ERK signaling. The in vivo experiment showed that integrin αvβ6 promoted tumor growth in xenograft model mice by accelerating tumor volume and reducing apoptosis. Meanwhile, lung metastasis model experiment suggested that integrin αvβ6 stimulated tumor metastasis with the increase of lung/total weight and tumor nodules. Simultaneously, integrin αvβ6 upregulated IL-8 expression detected by both Western blots and immunohistochemistry, along with the activation of MAPK/ERK signaling. Overall, these data suggested that, in vitro and in vivo, integrin αvβ6 promoted lung cancer proliferation and metastasis, at least in part, through upregulation of IL-8–mediated MAPK/ERK signaling. Thus, the inhibition of integrin αvβ6 and IL-8 may be the key for the treatment of lung cancer.  相似文献   

8.
9.
Kim KW  Moretti L  Lu B 《PloS one》2008,3(5):e2275

Background

Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro.

Methods and Findings

M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007) compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO) mouse embryonic fibroblasts (MEF) cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment.

Conclusions

M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation. Clinical trials are needed to determine the potential of this combination therapy in patients with locally advanced lung cancer.  相似文献   

10.
We previously reported the identification of TUSC1 (Tumor Suppressor Candidate 1), as a novel intronless gene isolated from a region of homozygous deletion at D9S126 on chromosome 9p in human lung cancer. In this study, we examine the differential expression of TUSC1 in human lung cancer cell lines by western blot and in a primary human lung cancer tissue microarray by immunohistochemical analysis. We also tested the functional activities and mechanisms of TUSC1 as a tumor suppressor gene through growth suppression in vitro and in vivo. The results showed no expression of TUSC1 in TUSC1 homozygously deleted cells and diminished expression in some tumor cell lines without TUSC1 deletion. Interestingly, the results from a primary human lung cancer tissue microarray suggested that higher expression of TUSC1 was correlated with increased survival times for lung cancer patients. Our data demonstrated that growth curves of tumor cell lines transfected with TUSC1 grew slower in vitro than those transfected with the empty vector. More importantly, xenograph tumors in nude mice grew significantly slower in vivo in cells stably transfected with TUSC1 than those transfected with empty vector. In addition, results from confocal microscopy and immunohistochemical analyses show distribution of TUSC1 in the cytoplasm and nucleus in tumor cell lines and in normal and tumor cells in the lung cancer tissue microarray. Taken together, our results support TUSC1 has tumor suppressor activity as a candidate tumor suppressor gene located on chromosome 9p.  相似文献   

11.
Despite advances in surgery, imaging, chemotherapy, and radiation, patients with glioblastoma multiforme (GBM), the most common histological subtype of glioma, have an especially dismal prognosis; >70% of GBM patients die within 2 years of diagnosis. In many human cancers, the microRNA miR-21 is overexpressed, and accumulating evidence indicates that it functions as an oncogene. Here, we report that miR-21 is overexpressed in human GBM cell lines and tumor tissue. Moreover, miR-21 expression in GBM patient samples is inversely correlated with patient survival. Knockdown of miR-21 in GBM cells inhibited cell proliferation in vitro and markedly inhibited tumor formation in vivo. A number of known miR-21 targets have been identified previously. By microarray analysis, we identified and validated insulin-like growth factor (IGF)-binding protein-3 (IGFBP3) as a novel miR-21 target gene. Overexpression of IGFBP3 in glioma cells inhibited cell proliferation in vitro and inhibited tumor formation of glioma xenografts in vivo. The critical role that IGFBP3 plays in miR-21-mediated actions was demonstrated by a rescue experiment, in which IGFBP3 knockdown in miR-21KD glioblastoma cells restored tumorigenesis. Examination of tumors from GBM patients showed that there was an inverse relationship between IGFBP3 and miR-21 expression and that increased IGFBP3 expression correlated with better patient survival. Our results identify IGFBP3 as a novel miR-21 target gene in glioblastoma and suggest that the oncogenic miRNA miR-21 down-regulates the expression of IGFBP3, which acts as a tumor suppressor in human glioblastoma.  相似文献   

12.
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.  相似文献   

13.
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.  相似文献   

14.
According to the fact that CEA gene expressed only in lung adenocarcinoma and not in normal lung cells, a retroviral vector (pCEAMR) was constructed which carried the CEA promoter coupled to MDRl ribozyme gene. pCEAMR was introduced into drug-resistant lung adenocarcinoma cells GAOK with CEA expression and HeLaK without CEA expression; the expression of pCEAMR and drug resistance in the infected cells were analyzedin vitro andin vivo; pCEAMR expressed only in CEA-producing GAOK cells and not in non-CEA-producing HeLa cells. The drug resistance to doxorubicin (DOX) decreased 91.5% in the infected GAOK cells and did not change in the infected HeLa cells. In nude mice, DOX could obviously inhibit the growth of the infected GAOK tumors, and had no effect on the growth of the infected HeLa cells. These results indicated that MDRl ribozyme gene regulated by CEA promoter expressed only in human adenocarcinoma cells and reversed their drug resistance selectively. This gene-drug therapy might serve as an effective treatment method for patients with CEA-producing lung cancers which was usually refractory to conventional chemotherapy  相似文献   

15.
Although senescence in oncogenesis has been widely studied, little is known regarding the role of this process in chemotherapy resistance. Thus, from the standpoint of enhancing and improving cancer therapy, a better understanding of the molecular machinery involved in chemotherapy-related senescence is paramount. We show for the first time that Mcl-1, a Bcl-2 family member, plays an important role in preventing chemotherapy-induced senescence (CIS). Overexpression of Mcl-1 in p53+ cell lines inhibits CIS. Conversely, downregulation of Mcl-1 makes cells sensitive to CIS. Surprisingly, downregulation of Mcl-1 in p53 cells restored CIS to similar levels as p53+ cells. In all cases where senescence can be induced, we observed increased p21 expression. Moreover, we show that the domain of Mcl-1 responsible for its antisenescent effects is distinct from that known to confer its antiapoptotic qualities. In vivo we observe that downregulation of Mcl-1 can almost retard tumor growth regardless of p53 status, while overexpression of Mcl-1 in p53+ cells conferred resistance to CIS and promoted tumor outgrowth. In summary, our data reveal that Mcl-1 can inhibit CIS in both a p53-dependent and -independent manner in vitro and in vivo and that this Mcl-1-mediated inhibition can enhance tumor growth in vivo.  相似文献   

16.
《Gene》2014,538(2):342-347
Chemotherapy plays a crucial role in hepatocellular carcinoma (HCC) treatment especially for patients with advanced HCC. Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of HCC. However, acquisition of cisplatin resistance is common in patients with HCC, and the underlying mechanism of such resistance is not fully understood. In the study, we focused on identifying the role of miRNAs in chemotherapy resistance after cisplatin-based combination chemotherapy. We assayed the expression level of miR-182 after cisplatin-based chemotherapy in patients with advanced HCC, and defined the biological functions by real-time PCR analysis and CCK-8 assay. We found that miR-182 levels were significantly increased in HCC patients treated with cisplatin-based chemotherapy. miR-182 levels were also higher in cisplatin-resistant HepG2 (HepG2-R) cells than in HepG2 cells. Upregulated miR-182 significantly increased the cell viability, whereas miR-182 knockdown reduced the cell viability during cisplatin treatment. miR-182 inhibition also partially overcame cisplatin resistance in HepG2-R cell. Furthermore, we found that upregulated miR-182 inhibited the expression of tumor suppressor gene TP53INP1 (tumor protein 53-induced nuclear protein1) in vitro. In vivo, miR-182 and TP53INP1 expression was negatively correlated. We finally demonstrated that miR-182 increased cisplatin resistance of HCC cell, partly by targeting TP53INP1. These data suggest that miR-182/TP53INP1 signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

17.
Mesenchymal stem cells (MSC) are emerging as novel cell-based delivery agents; however, a thorough investigation addressing their therapeutic potential in medulloblastomas (MB) has not been explored to date. In this study, we engineered human MSC to express a potent and secretable variant of a tumor specific agent, tumor necrosis factor-apoptosis-inducing ligand (S-TRAIL) and assessed the ability of MSC-S-TRAIL mediated MB killing alone or in combination with a small molecule inhibitor of histone-deacetylase, MS-275, in TRAIL-sensitive and -resistant MB in vitro and in vivo. We show that TRAIL sensitivity/resistance correlates with the expression of its cognate death receptor (DR)5 and MSC-S-TRAIL induces caspase-3 mediated apoptosis in TRAIL-sensitive MB lines. In TRAIL-resistant MB, we show upregulation of DR4/5 levels when pre-treated with MS-275 and a subsequent sensitization to MSC-S-TRAIL mediated apoptosis. Using intracranially implanted MB and MSC lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that MSC-S-TRAIL has significant anti-tumor effects in mice bearing TRAIL-sensitive and MS-275 pre-treated TRAIL-resistant MBs. To our knowledge, this is the first study that explores the use of human MSC as MB-targeting therapeutic-vehicles in vivo in TRAIL-sensitive and resistant tumors, and has implications for developing effective therapies for patients with medulloblastomas.  相似文献   

18.
ICAM3 was reported to promote metastasis in tumors. However, the underlying mechanism remains elusive. Here, we disclosed that the expression of ICAM3 was closely correlated with the TNM stage of human breast and lung cancer, as well as the dominant overexpression in high aggressive tumor cell lines (231 and A549 cells). Moreover, the knockdown of ICAM3 inhibited tumor metastasis whereas the ectopic expression of ICAM3 promoted tumor metastasis both in vitro and in vivo. In addition, exploration of the underlying mechanism demonstrated that ICAM3 not only binds to LFA-1 with its extracellular domain and structure protein ERM but also to lamellipodia with its intracellular domain which causes a tension that pulls cells apart (metastasis). Furthermore, ICAM3 extracellular or intracellular mutants alternatively abolished ICAM3 mediated tumor metastasis in vitro and in vivo. As a therapy strategy, LFA-1 antibody or Lifitegrast restrained tumor metastasis via targeting ICAM3-LFA-1 interaction. In summary, the aforementioned findings suggest a model of ICAM3 in mediating tumor metastasis. This may provide a promising target or strategy for the prevention of tumor metastasis.  相似文献   

19.
Verma MK  Miki Y  Sasano H 《Steroids》2011,76(8):759-764
Lung cancer is the leading cause of cancer mortality in both women and men worldwide but gender differences exist in their clinical and biological manifestations. In particular, among life time non-smoker, female are far more likely to develop lung carcinoma than male. Recent studies demonstrated that estrogens are synthesized in situ in both male and female lung cancers through aromatase, suggesting that sex steroid may contribute to the pathogenesis and development of lung carcinoma. In addition, human lung carcinomas have been recently demonstrated to be frequently associated with expression of estrogen receptors in both male and female patients and a lower expression of aromatase was reported to be associated with better prognosis. Preclinical studies further demonstrated that aromatase inhibitor (AI) suppressed the lung tumor growth both in vitro and in vivo. These findings all suggest a potential role of intratumoral aromatase in biological behavior of non-small cell lung cancer (NSCLC), the most common form of human lung malignancy. Therefore, AIs may become viable therapeutic options for disease management in NSCLC patients but further studies are definitely required to obtain a better understanding of the potential roles of intratumoral aromatase expression as a predictive biomarker for clinical outcome in these NSCLC patients.  相似文献   

20.
PURPOSE: The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN: We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS: AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION: DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号