首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Z and W sex chromosomes of birds have evolved independently from the mammalian X and Y chromosomes [1]. Unlike mammals, female birds are heterogametic (ZW), while males are homogametic (ZZ). Therefore male birds, like female mammals, carry a double dose of sex-linked genes relative to the other sex. Other animals with nonhomologous sex chromosomes possess "dosage compensation" systems to equalize the expression of sex-linked genes. Dosage compensation occurs in animals as diverse as mammals, insects, and nematodes, although the mechanisms involved differ profoundly [2]. In birds, however, it is widely accepted that dosage compensation does not occur [3-5], and the differential expression of Z-linked genes has been suggested to underlie the avian sex-determination mechanism [6]. Here we show equivalent expression of at least six of nine Z chromosome genes in male and female chick embryos by using real-time quantitative PCR [7]. Only the Z-linked ScII gene, whose ortholog in Caenorhabditis elegans plays a crucial role in dosage compensation [8], escapes compensation by this assay. Our results imply that the majority of Z-linked genes in the chicken are dosage compensated.  相似文献   

2.
3.
Several lines of evidence suggest that the X chromosome of various animal species has an unusual complement of genes with sex-biased or sex-specific expression. However, the study of the X chromosome gene content in different organisms provided conflicting results. The most striking contrast concerns the male-biased genes, which were reported to be almost depleted from the X chromosome in Drosophila but overrepresented on the X chromosome in mammals. To elucidate the reason for these discrepancies, we analysed the gene content of the Z chromosome in chicken. Our analysis of the publicly available expressed sequence tags (EST) data and genome draft sequence revealed a significant underrepresentation of ovary-specific genes on the chicken Z chromosome. For the brain-expressed genes, we found a significant enrichment of male-biased genes but an indication of underrepresentation of female-biased genes on the Z chromosome. This is the first report on the nonrandom gene content in a homogametic sex chromosome of a species with heterogametic female individuals. Further comparison of gene contents of the independently evolved X and Z sex chromosomes may offer new insight into the evolutionary processes leading to the nonrandom genomic distribution of sex-biased and sex-specific genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

4.
Smith JJ  Voss SR 《Genetics》2007,177(1):607-613
We tested hypotheses concerning the origin of bird and mammal sex chromosomes by mapping the location of amniote sex-chromosome loci in a salamander amphibian (Ambystoma). We found that ambystomatid orthologs of human X and chicken Z sex chromosomes map to neighboring regions of a common Ambystoma linkage group 2 (ALG2). We show statistically that the proportion of human X and chicken Z orthologs observed on ALG2 is significantly different from the proportion that would be expected by chance. We further show that conserved syntenies between ALG2 and amniote chromosomes are identified as overlapping conserved syntenies when all available chicken (N = 3120) and human (N = 14,922) RefSeq orthologs are reciprocally compared. In particular, the data suggest that chromosomal regions from chicken chromosomes (GGA) Z and 4 and from human chromosomes (HSA) 9, 4, X, 5, and 8 were linked ancestrally. A more distant outgroup comparison with the pufferfish Tetraodon nigroviridis reveals ALG2/GGAZ/HSAX syntenies among three pairs of ancestral chromosome duplicates. Overall, our results suggest that sex chromosomal regions of birds and mammals were recruited from a common ancestral chromosome, and thus our findings conflict with the currently accepted hypothesis of separate autosomal origins. We note that our results were obtained using the most immediate outgroup to the amniote clade (mammals, birds, and other reptiles) while the currently accepted hypothesis is primarily based upon conserved syntenies between in-group taxa (birds and mammals). Our study illustrates the importance of an amphibian outgroup perspective in identifying ancestral amniote gene orders and in reconstructing patterns of vertebrate sex-chromosome evolution.  相似文献   

5.
In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently.  相似文献   

6.
7.
In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.  相似文献   

8.
9.
The first specimen of platypus (Ornithorhynchus anatinus) that reached Britain in the late 18th century was regarded a scientific hoax. Over decades the anatomical characteristics of these unique mammals, such as egg laying and the existence of mammary glands, were hotly debated before they were accepted. Within the last 40 years, more and more details of monotreme physiology, histology, reproduction and genetics have been revealed. Some show similarities with birds or reptiles, some with therian mammals, but many are very specific to monotremes. The genome is no exception to monotreme uniqueness. An early opinion was that the karyotype, composed of a few large chromosomes and many small ones, resembled bird and reptile macro- and micro-chromosomes. However, the platypus genome also features characteristics that are not present in other mammals, such as a complex translocation system. The sex chromosome system is still not resolved. Nothing is known about dosage compensation and, unlike in therian mammals, there seems to be no genomic imprinting. In this article we will recount the mysteries of the monotreme genome and describe how we are using recently developed technology to identify chromosomes in mitosis, meiosis and sperm, to map genes to chromosomes, to unravel the sex chromosome system and the translocation chain and investigate X inactivation and genomic imprinting in monotremes.  相似文献   

10.
11.
12.
Dosage compensation: do birds do it as well?   总被引:11,自引:0,他引:11  
  相似文献   

13.
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna—and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.  相似文献   

14.
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.  相似文献   

15.
A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain of ten sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes.  相似文献   

16.
X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny   总被引:1,自引:0,他引:1  
In mammals, sex is determined by differential inheritance of a pair of dimorphic chromosomes: the gene-rich X chromosome and the gene-poor Y chromosome. To balance the unequal X-chromosome dosage between the XX female and XY male, mammals have adopted a unique form of dosage compensation in which one of the two X chromosomes is inactivated in the female. This mechanism involves a complex, highly coordinated sequence of events and is a very different strategy from those used by other organisms, such as the fruitfly and the worm. Why did mammals choose an inactivation mechanism when other, perhaps simpler, means could have been used? Recent data offer a compelling link between ontogeny and phylogeny. Here, we propose that X-chromosome inactivation and imprinting might have evolved from an ancient genome-defence mechanism that silences unpaired DNA.  相似文献   

17.
18.
Sex-determination mechanisms in birds and mammals evolved independently for more than 300 million years. Unlike mammals, sex determination in birds operates through a ZZ/ZW sex chromosome system, in which the female is the heterogametic sex. However, the molecular mechanism remains to be elucidated. Comparative gene mapping revealed that several genes on human chromosome 9 (HSA 9) have homologs on the chicken Z chromosome (GGA Z), indicating the common ancestry of large parts of GGA Z and HSA 9. Based on chromosome homology maps, we isolated a Z-linked chicken ortholog of DMRT1, which has been implicated in XY sex reversal in humans. Its location on the avian Z and within the sex-reversal region on HSA 9p suggests that DMRT1 represents an ancestral dosage-sensitive gene for vertebrate sex-determination. Z dosage may be crucial for male sexual differentiation/determination in birds.  相似文献   

19.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   

20.
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号