首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this review is to consider variation in mating p among females. We define mating p as the sensory and behavioural properties that influence the propensity of individuals to mate with certain phenotypes. Two properties of mating p can be distinguished: (i) ‘preference functions’–the order with which an individual ranks prospective mates and (2)‘choosiness’ -the effort an individual is prepared to invest in mate assessment. Patterns of mate choices can be altered by changing the costs of choosiness without altering the preference function. We discuss why it is important to study variation in female mating behaviour and identify five main areas of interest: Variation in mating p and costs of choosiness could (i) influence the rate and direction of evolution by sexual selection, (2) provide information about the evolutionary history of female p, (3) help explain inter-specific differences in the evolution of secondary sexual characteristics, (4) provide information about the level of benefits gained from mate choice, (5) provide information about the underlying mechanisms of mate choice. Variation in mate choice could be due to variability in preference functions, degree of choosiness, or both, and may arise due to genetic differences, developmental trajectories or proximate environmental factors. We review the evidence for genetic variation from genetic studies of heritability and also from data on the repeatability of mate-choice decisions (which can provide information about the upper limits to heritability). There can be problems in interpreting patterns of mate choice in terms of variation in mating p and we illustrate two main points. First, some factors can lead to mate choice patterns that mimic heritable variation in p and secondly other factors may obscure heritable p. These factors are divided into three overlapping classes, environmental, social and the effect of the female phenotype. The environmental factors discussed include predation risk and the costs of sampling; the social factors discussed include the effect of male–male interactions as well as female competition. We review the literature which presents data on how females sample males and discuss the number of cues females use. We conclude that sexual-selection studies have paid far less attention to variation among females than to variation among males, and that there is still much to learn about how females choose males and why different females make different choices. We suggest a number of possible lines for future research.  相似文献   

2.
Mate choice studies routinely assume female preferences for indicators of high quality in males but rarely consider developmental causes of within-population variation in mating preferences. By contrast, recent mate choice models assume that costs and benefits of searching or competing for high-quality males depend on females'' phenotypic quality. A prediction following from these models is that manipulation of female quality should alter her choosiness or even the direction of her mating preferences. We here provide (to our knowledge) the first example where an experimental manipulation of female quality induced a mating preference for low-quality males. Zebra finches (Taeniopygia guttata) reared in small or large experimental broods became high- or low-quality adults, respectively. Only high-quality females preferred high-quality males'' mate-advertising songs, while all low-quality females preferred low-quality males'' song. Subsequent breeding trials confirmed this pattern: latency until egg laying was shortest in quality-matched pairs, indicating that quality-matched birds were accepted faster as partners. Females produced larger eggs when mated with high-quality males, regardless of their own quality, indicating consensus regarding male quality despite the expression of different choices. Our results demonstrate the importance of considering the development of mating preferences to understand their within-population variation and environmentally induced change.  相似文献   

3.
Mate sampling and the sexual conflict over mating in seaweed flies   总被引:3,自引:1,他引:2  
The order in which females encounter, or sample, males in apopulation may have important consequences for mate choice,with the information gathered about males influencing boththe preference function and degree of choosiness of females.Sexual selection may be affected as a result. Sampling of particularsubsets of males may be a crucial component of individual variation in mate preferences within populations. However, the sequencein which males are sampled may also be important in specieswithout traditional, active mate choice, such as when sexualselection involves sexual conflict over mating. This wouldoccur if the likelihood of a female mating with a male of acertain phenotype changes as a result of previous encounters.We examined the effects of encountering males differing inbody size, a sexually selected phenotype, in the seaweed flyCoelopa frigida. Sexual selection occurs in this species asa result of a sexual conflict over mating. We show that theoutcome of the sexual conflict is independent of the orderin which males are encountered by female seaweed flies, withthe overall mating advantage to large males being unaffected.In addition, we explored female preference functions and evaluatethe heterogeneity in female willingness to mate. We suggestthat consideration of mate sampling theory is valuable whenexamining mate choice in species in which sexual selectionis driven by sexual conflict.  相似文献   

4.
While studies of sexual selection focus primarily on female choice and male-male competition, males should also exert mate choice in order to maximize their reproductive success. We examined male mate choice in mosquitofish, Gambusia holbrooki, with respect to female size and female dominance. We found that the number of mating attempts made by a male was predicted by the dominance rank of females in a group, with dominant females attracting more mating attempts than subordinates. The number of mating attempts made by males was independent of the female size. The observed bias in the number of mating attempts towards dominant females may be driven either by straightforward male mate choice, since dominance and female fecundity are often closely related, or via the dominant females mediating male mating behaviour by restricting their access to subordinate females.  相似文献   

5.
Abstract  1. Large male seaweed flies (Diptera: Coelopidae) are more likely to mate than smaller males. This is due to sexual conflict over mating, by which females physically resist male attempts to copulate. In some species, large males are simply more efficient at overpowering female resistance.
2. Female reluctance to mate is likely to have evolved due to the costs of mating to females. In many dipterans, males manipulate female behaviour through seminal proteins that have evolved through sperm competition. This behavioural manipulation can be costly to females, for example forcing females to oviposit in sub-optimal conditions and increasing their mortality.
3. Previous work has failed to identify any ubiquitous costs of mating to female coelopids. The work reported here was designed to investigate the effects of exposure to oviposition sites ( Fucus algae) on the reproductive behaviour of four species of coelopid. Algae deposition in nature is stochastic and females mate with multiple males in and around oviposition sites. Spermatogenesis is restricted to the pupal stage and there is last-male sperm precedence. It was predicted that males would avoid wasting sperm and would be more willing to mate, and to remain paired with females for longer, when exposed to oviposition material compared with control males. Females were predicted to incur longevity costs of mating if mating increased their rate of oviposition, especially in the presence of algae.
4. The behaviour of males of all four species concurred with the predictions; however mating did not affect female receptivity, oviposition behaviour, or longevity. Exposure to algae induced oviposition and increased female mortality in all species independently of mating and egg production. The evolutionary ecology of potential costs of mating to female coelopids are discussed in the light of these findings.  相似文献   

6.
Lekking males aggregate to attract females and contribute solely to egg fertilization, without any further parental care. Evolutionary theory therefore predicts them to be nonchoosy toward their mates, because any lost mating opportunities would outweigh the benefits associated with such preferences. Nevertheless, due to time costs, the production of energetically costly sexual displays, and potential sperm limitation, the mating effort of lekking males is often considerable. These factors, combined with the fact that many females of varying quality are likely to visit leks, could favor the evolution of male mate preferences. Here, we show that males of the lekking lesser wax moth, Achroia grisella, were indeed more likely to mate with heavier females in choice experiments, even at their virgin mating (i.e., when their reproductive resources have not yet been depleted by previous matings). This differential female mating success could not be attributed to female behavior as heavy and light females showed similar motivation to mate (i.e., latency to approach the males) and time to copulate. Males seem to benefit from mating with heavier females, as fecundity positively correlated with female mass. This new empirical evidence shows that male mate choice may have been underestimated in lekking species.  相似文献   

7.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

8.
Luttbeg  Barney 《Behavioral ecology》2004,15(2):239-247
Explanations for the existence of alternative male mating tacticsfocus primarily on male–male competition. Mating systems,however, are composed of interactions both within and betweenthe sexes, and the role of female behavior in shaping male matingtactics should not be overlooked. By using a dynamic state variablegame model, I examine how female mate assessment and choicebehavior affect the frequency of alternative male mating tactics.When females can accurately assess the quality of males, onlymales with high quality are likely to be chosen as mates, andthus, lower-quality males gain little fitness from courtingfemales. This leads lower-quality males to switch to an alternativemating tactic that attempts to circumvent female mate choice.In contrast, if the abilities of females to accurately assessmales are constrained by assessment costs, imperfect information,or time constraints, or if the pool of available males is smaller,then lower-quality males are increasingly chosen as mates andthey less often use alternative mating tactics. Thus, femalebehavior shapes the frequency of alternative male mating tactics.A consequence of this game between the sexes is that male behavior(i.e., increased alternative mating tactics) decreases the benefitsfemales might otherwise gain from lower assessment costs, clearersignals of male quality, more time to choose a male, and moremales from which to choose a mate.  相似文献   

9.
Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to 'precopulatory' male mate choice, some insects exhibit 'cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform ('mating investment') Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways.  相似文献   

10.
Relationships between measures of body size, asymmetry, courtship effort, and mating success were investigated in the housefly, Musca domestica (Diptera: Muscidae). A previous study indicated that both male and female flies with low fluctuating asymmetry enjoyed enhanced mating success. The aim of our investigations was to determine whether the greater success of symmetrical males is due to variation in male mating effort or to female choice and whether males exhibited mate choice. However, our study found directional rather than fluctuating asymmetry with both male and female flies having, on average, longer left wings than right. Also, asymmetry was not related to mating success in either sex. Rather, both males and females appeared to exhibit choice on the basis of the size of potential mates, with males preferring females with long bodies and females preferring heavy males. Possible benefits from choice of large mates are discussed. The initial mating strikes (in which the male leaps onto the back of the female) did not appear to be targeted according to female morphology, and their frequency did not vary according to male morphology. This indicates that mate choice by both sexes according to size probably occurs during the later stages of courtship, when the flies are in intimate contact. Possible reasons for the absence of choice according to asymmetry are discussed.  相似文献   

11.
I investigated alternative hypotheses concerning the functions of pre-implantation male-induced pregnancy disruption in meadow voles. Disruptions may be viewed as: 1. Postcopulatory male competition; 2. A mechanism for postcopulatory mate choice by females; and 3. A means of benefitting females by terminating investment in litters that may be harmed by new males. Female voles were paired with a second male 3 d after mating with their first mate. Behavioural interactions between the female and each male were compared for females that disrupted or retained the pregnancy sired by the first male. Whether they were the females' first or second mates, males siring litters showed similar high levels of approach and moderately high aggression, behaviour that differed from the females' other mates. Disrupted females huddled sooner with their second mates than females that retained their original pregnancies, and females tended to approach males that approached them. These results suggest that females influence whether a disruption occurs by the amount of contact they initiate with the second male, and thus pregnancy disruption may facilitate postcopulatory mate choice by females. This pre-implantation disruption did not enhance female reproductive success: pup survival was the same whether or not a disruption occurred, and males living with pups they had sired (after a disruption) spent as much time with them as males with unrelated pups (females did not disrupt).  相似文献   

12.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

13.
Indirect genetic benefits derived from female mate choice comprise additive (good genes) and nonadditive genetic benefits (genetic compatibility). Although good genes can be revealed by condition‐dependent display traits, the mechanism by which compatibility alleles are detected is unclear because evaluation of the genetic similarity of a prospective mate requires the female to assess the genotype of the male and compare it to her own. Cuticular hydrocarbons (CHCs), lipids coating the exoskeleton of most insects, influence female mate choice in a number of species and offer a way for females to assess genetic similarity of prospective mates. Here, we determine whether female mate choice in decorated crickets is based on male CHCs and whether it is influenced by females' own CHC profiles. We used multivariate selection analysis to estimate the strength and form of selection acting on male CHCs through female mate choice, and employed different measures of multivariate dissimilarity to determine whether a female's preference for male CHCs is based on similarity to her own CHC profile. Female mating preferences were significantly influenced by CHC profiles of males. Male CHC attractiveness was not, however, contingent on the CHC profile of the choosing female, as certain male CHC phenotypes were equally attractive to most females, evidenced by significant linear and stabilizing selection gradients. These results suggest that additive genetic benefits, rather than nonadditive genetic benefits, accrue to female mate choice, in support of earlier work showing that CHC expression of males, but not females, is condition dependent.  相似文献   

14.
Detection of female mating status using chemical signals and cues   总被引:1,自引:0,他引:1  
Males of many species choose their mate according to the female's reproductive status, and there is now increasing evidence that male fitness can depend on this discrimination. However, females will also aim to regulate their mating activity so as to maximize their own fitness. As such, both sexes may attempt to dictate the frequency and timing of female mating, reflecting the potentially different costs of female signaling to both sexes. Here, I review evidence that chemical cues and signals are used widely by males to discriminate between mated and unmated females, and explore the mechanisms by which female odour changes post‐mating. There is substantial empirical evidence that mated and unmated females differ in their chemical profile, and that this variation provides males with information on a female's mating status. Although there appears to be large variation among species regarding the mechanisms by which female odour is altered post‐mating, the transfer of male substances to females during or subsequent to copulation appear to play a major role. This transfer of substances by males may be part of their strategy to suppress reproduction by competing males, particularly in species where females mate more than once.  相似文献   

15.
In many animals, body size plays a crucial role in mating success in the context of competition and preference for mates. Increasing evidence has shown that male mate preference can be size‐dependent and, therefore, an important driver of size‐assortative mating. To test this theory, mate choice experiments were performed during the three consecutive stages of mating behaviour, namely trail following, shell mounting and copulation, in the dioecious mangrove snail, Littoraria ardouiniana. These experiments identified two possible forms of size‐dependent male mate preference which could contribute to the formation of size‐assortative mating in these snails. Firstly, whereas small males were unselective, large males were selective and preferred to follow mucus trails laid by large females. Alternatively, the results can also be interpreted as all males were selective and adopted a mating strategy of selecting females similar to, or larger than, their own sizes. Both small and large males also copulated for longer with large than with small females, and this was more pronounced in large males. When two males encountered a female, they engaged in physical aggression, with the larger male excluding the smaller male from copulating with the female. This study, therefore, demonstrated that size‐dependent male mate preference may, along with male–male competition, play an important role in driving size‐assortative mating in these mangrove snails, and this may also be the case in other species that exhibit male mate choice.  相似文献   

16.
Theory predicts that the strength of male mate choice should vary depending on male quality when higher-quality males receive greater fitness benefits from being choosy. This pattern extends to differences in male body size, with larger males often having stronger pre- and post-copulatory preferences than smaller males. We sought to determine whether large males and small males differ in the strength (or direction) of their preference for large, high-fecundity females using the fruit fly, Drosophila melanogaster. We measured male courtship preferences and mating duration to show that male body size had no impact on the strength of male mate choice; all males, regardless of their size, had equally strong preferences for large females. To understand the selective pressures shaping male mate choice in males of different sizes, we also measured the fitness benefits associated with preferring large females for both large and small males. Male body size did not affect the benefits that males received: large and small males were equally successful at mating with large females, received the same direct fitness benefits from mating with large females, and showed similar competitive fertilization success with large females. These findings provide insight into why the strength of male mate choice was not affected by male body size in this system. Our study highlights the importance of evaluating the benefits and costs of male mate choice across multiple males to predict when differences in male mate choice should occur.  相似文献   

17.
Female Coelopa nebularum attempt to avoid mating with males by adopting up to three behavioral responses. Kicking and shaking are designed to dislodge mounted males, whereas downward abdominal curling prevents engagement of genitalia. We find that some females are more willing to mate than others, but their choice of rejection strategy is inconsistent. Mating does not affect behavior in immediately subsequent encounters. Male size influences the choice of rejection strategy and is positively associated with mating success. Different strategies have similar success rates. The response to a mount is not influenced by the size of a male encountered immediately beforehand. We propose that these results are inconsistent with adaptive mate choice or mate assessment and suggest that females are simply attempting to avoid the costs of mating with all males.  相似文献   

18.
Given the non-trivial cost of reproduction for males and substantial variation in female quality, males have been predicted to show mating bias as an evolved strategy. Using a large outbred population of Drosophila melanogaster, we test this prediction and show that males may adaptively bias their mating effort in response to the infection status of females. Given a simultaneous choice between females infected with pathogenic bacteria and sham infected females, males preferentially mated with the latter, who had a higher reproductive output compared to infected females. This may provide evidence for pre-copulatory male mate choice. Assessment of the reproductive behaviour ensured that the observed pattern of mating bias was not due to differences in receptivity between females infected with pathogenic bacteria and sham infected females. Further, there was no evidence for post-copulatory male mate choice measured in terms of copulation duration.  相似文献   

19.
Though females are generally more selective in mate choice, males may also benefit from mate choice if male reproductive success is limited by factors other than simply the number of female mates, and if females differ in short-term reproductive potential. We studied male mate choice in a free-ranging troop of Tibetan macaques Macaca thibetana at Mt. Huangshan,China, from August 2007 to April 2008. We employed focal animal sampling and all occurrence sampling to record sexual related behaviors. Eight adult females were divided into three female quality categories according to the females' age, rank and parity.Using male mating effort as a proxy for male mate choice, we found that males do distinguish female quality and show time-variant mating strategies. Specifically, females with dominant rank, high fecundity, and middle age attracted significantly more males. Our results suggest that female short-term reproductive potential appears to be an important variable in determining male mating effort. Male Tibetan macaques do exercise mate choice for higher quality females as well as reduce useless reproductive cost, which is consistent with the direct benefits theory of mate choice.  相似文献   

20.
The outcome of mate choice depends on complex interactions between males and females both before and after copulation. Although the competition between males for access to mates and premating choice by females are relatively well understood, the nature of interactions between cryptic female choice and male sperm competition within the female reproductive tract is less clear. Understanding the complexity of postcopulatory sexual selection requires an understanding of how anatomy, physiology and behaviour mediate sperm transfer and storage within multiply mated females. Here we use a newly developed molecular technique to directly quantify mixed sperm stores in multiple mating females of the black field cricket, Teleogryllus commodus. In this species, female postcopulatory choice is easily observed and manipulated as females delay the removal of the spermatophore in favour of preferred males. Using twice‐mated females, we find that the proportion of sperm in the spermatheca attributed to the second male to mate with a female (S2) increases linearly with the time of spermatophore attachment. Moreover, we show that the insemination success of a male increases with its attractiveness and decreases with the size of the female. The effect of male attractiveness in this context suggests a previously unknown episode of mate choice in this species that reinforces the sexual selection imposed by premating choice and conflicts with the outcome of postmating male harassment. Our results provide some of the clearest evidence yet for how sperm transfer and displacement in multiply mated females can lead directly to cryptic female choice, and that three distinct periods of sexual selection operate in black field crickets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号