首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A systematic comparison of the tRNAs imported into the mitochondria of larch, maize and potato reveals considerable differences among the three species. Larch mitochondria import at least eleven different tRNAs (more than half of those tested) corresponding to ten different amino acids. For five of these tRNAs [tRNAPhe(GAA), tRNALys(CUU), tRNAPro(UGG), tRNASer(GCU) and tRNASer(UGA)] this is the first report of import into mitochondria in any plant species. There are also differences in import between relatively closely related plants; wheat mitochondria, unlike maize mitochondria import tRNAHis, and sunflower mitochondria, unlike mitochondria from other angiosperms tested, import tRNASer(GCU) and tRNASer(UGA). These results suggest that the ability to import each tRNA has been acquired independently at different times during the evolution of higher plants, and that there are few apparent restrictions on which tRNAs can or cannot be imported. The implications for the mechanisms of mitochondrial tRNA Import in plants are discussed.  相似文献   

3.
4.
5.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

6.
The genes encoding pea and potato mitochondrial tRNAGly and pea mitochondrial tRNASer(GCU) were analyzed with particular respect to their expression. Secondary-structure models deduced from the identical potato and pea tRNAGly gene sequences revealed A7:C66 mismatches in the seventh base pair at the base of the acceptor stems of both tRNAs. Sequence analyses of tRNAGly cDNA clones showed that these mispairings are not corrected by C66 to U66 conversions, as observed in plant mitochondrial tRNAPhe. Likewise, a U6:C67 mismatch identified in the acceptor stem of the pea tRNASer(GCU) is not altered by RNA editing to a mismatched U:U pair, which is created by RNA editing in Oenothera mitochondrial tRNACys. In vitro processing reactions with the respective tRNAGly and tRNASer(GCU) precursors show that such conversions are not necessary for 5′ and 3′ end maturation of these tRNAs. These results demonstrate that not all C:A (A:C) or U:C (C:U) mismatches in double-stranded regions of tRNAs are altered by RNA editing. An RNA editing event in plant mitochondrial tRNAs is thus not generally indicated by the presence of a mismatch but may depend on additional parameters.  相似文献   

7.
8.
The genes encoding pea and potato mitochondrial tRNAGly and pea mitochondrial tRNASer(GCU) were analyzed with particular respect to their expression. Secondary-structure models deduced from the identical potato and pea tRNAGly gene sequences revealed A7:C66 mismatches in the seventh base pair at the base of the acceptor stems of both tRNAs. Sequence analyses of tRNAGly cDNA clones showed that these mispairings are not corrected by C66 to U66 conversions, as observed in plant mitochondrial tRNAPhe. Likewise, a U6:C67 mismatch identified in the acceptor stem of the pea tRNASer(GCU) is not altered by RNA editing to a mismatched U:U pair, which is created by RNA editing in Oenothera mitochondrial tRNACys. In vitro processing reactions with the respective tRNAGly and tRNASer(GCU) precursors show that such conversions are not necessary for 5′ and 3′ end maturation of these tRNAs. These results demonstrate that not all C:A (A:C) or U:C (C:U) mismatches in double-stranded regions of tRNAs are altered by RNA editing. An RNA editing event in plant mitochondrial tRNAs is thus not generally indicated by the presence of a mismatch but may depend on additional parameters. Received: 18 July 1997 / Accepted: 3 November 1997  相似文献   

9.
All mitochondrial tRNAs in kinetoplastid protists are encoded in the nucleus and imported into the organelle. The tRNA(Trp)(CCA) can decode the standard UGG tryptophan codon but can not decode the mitochondrial UGA tryptophan codon. We show that the mitochondrial tRNA(Trp) undergoes a specific C to U nucleotide modification in the first position of the anticodon, which allows decoding of mitochondrial UGA codons as tryptophan. Functional evidence for the absence of a UGA suppressor tRNA in the cytosol, using a reporter gene, was also obtained, which is consistent with a mitochondrial localization of this editing event. Leishmania cells have dealt with the problem of a lack of expression within the organelle of this non-universal tRNA by compartmentalizing an editing activity that modifies the anticodon of the imported tRNA.  相似文献   

10.
In Bacillus subtilis, four codons, CCU, CCC, CCA, and CCG, are used for proline. There exists, however, only one proline-specific tRNA having the anticodon mo(5)UGG. Here, we found that this tRNA(Pro)(mo(5)UGG) can read not only the codons CCA, CCG and CCU but also CCC, using an in vitro assay system. This means that the first nucleoside of its anticodon, 5-methoxyuridine (mo(5)U), recognizes A, G, U and C. On the other hand, it was reported that mo(5)U at the first position of the anticodon of tRNA(Val)(mo(5)UAC) can recognize A, G, and U but not C. A comparison of the structure of the anticodon stem and loop of tRNA(Pro)(mo(5)UGG) with those of other tRNAs containing mo(5)U at the first positions of the anticodons suggests that a modification of nucleoside 32 to pseudouridine (Psi) enables tRNA(Pro)(mo(5)UGG) to read the CCC codon.  相似文献   

11.
The secondary structures of metazoan mitochondrial (mt) tRNAs(Ser) deviate markedly from the paradigm of the canonical cloverleaf structure; particularly, tRNA(Ser)(GCU) corresponding to the AGY codon (Y=U and C) is highly truncated and intrinsically missing the entire dihydrouridine arm. None of the mt serine isoacceptors possesses the elongated variable arm, which is the universal landmark for recognition by seryl-tRNA synthetase (SerRS). Here, we report the crystal structure of mammalian mt SerRS from Bos taurus in complex with seryl adenylate at an atomic resolution of 1.65 A. Coupling structural information with a tRNA-docking model and the mutagenesis studies, we have unraveled the key elements that establish tRNA binding specificity, differ from all other known bacterial and eukaryotic systems, are the characteristic extensions in both extremities, as well as a few basic residues residing in the amino-terminal helical arm of mt SerRS. Our data further uncover an unprecedented mechanism of a dual-mode recognition employed to discriminate two distinct 'bizarre' mt tRNAs(Ser) by alternative combination of interaction sites.  相似文献   

12.
We have sequenced the tRNA genes of mtDNA from patients with chronic progressive external ophthalmoplegia (CPEO) without detectable mtDNA deletions. Four point mutations were identified, located within highly conserved regions of mitochondrial tRNA genes, namely tRNA(Leu)(UAG), tRNA(Ser)(GCU), tRNA(Gly) and tRNA(Lys). One of these mutations (tRNA(Leu)(UAG)) was found in four patients with different forms of mitochondrial myopathy. An accumulation of three different tRNA point mutations (tRNA(Leu)(UAG)), tRNA(Ser)(GCU) and tRNA(Gly) was observed in a single patient, suggesting that mitochondrial tRNA genes represent hotspots for point mutations causing neuromuscular diseases.  相似文献   

13.
Two restriction enzyme fragments containing yeast mitochondrial tRNA genes have been characterized by DNA sequence analysis. One of these fragments is 320 base pairs long and contains a tRNA Ser gene. The corresponding tRNA SER was isolated from yeast mitochondria and its nucleotide sequence also was determined. This mitochondrial tRNA is 90 nucleotides in length, has a G + C content of 38%, and has UGA as the anticodon. A portion of a 680-base-pair DNA fragment containing a tRNA Phe gene was also sequenced. The portion of this gene which codes for the mature tRNA is 75 base pairs in length, has a G + C content of 33%, and contains the anticodon GAA. Neither gene contains an intervening sequence or codes for the 3' CCA terminus. Both are surrounded by regions of more than 90% A + T. The significance of these sequences is discussed.  相似文献   

14.
15.
16.
Pathogenic mutations in mitochondrial tRNAs are 6.5 times more frequent than in other mitochondrial genes. This suggests that tRNA mutations perturb more than one function. A potential additional tRNA gene function is that of templating for antisense tRNAs. Pathogenic mutations weaken cloverleaf secondary structures of sense tRNAs. Analyses here show similar effects for most antisense tRNAs, especially after adjusting for associations between sense and antisense cloverleaf stabilities. These results imply translational activity by antisense tRNAs. For sense tRNAs Ala and Ser UCN, pathogenicity associates as much with sense as with antisense cloverleaf formation. For tRNA Pro, pathogenicity seems associated only with antisense, not sense tRNA cloverleaf formation. Translational activity by antisense tRNAs is expected for the 11 antisense tRNAs processed by regular sense RNA maturation, those recognized by their cognate amino acid’s tRNA synthetase, and those forming relatively stable cloverleaves as compared to their sense counterpart. Most antisense tRNAs probably function routinely in translation and extend the tRNA pool (extension hypothesis); others do not (avoidance hypothesis). The greater the expected translational activity of an antisense tRNA, the more pathogenic mutations weaken its cloverleaf secondary structure. Some evidence for RNA interference, a more classical role for antisense tRNAs, exists only for tRNA Ser UCN. Mutation pathogenicity probably frequently results from a mixture of effects due to sense and antisense tRNA translational activity for many mitochondrial tRNAs. Genomic studies should routinely explore for translational activity by antisense tRNAs.  相似文献   

17.
The cloverleaf stem segments of the suppressor gene of bacteriophage T4 tRNA(Gln) contain ten G.C and ten A.U base-pairs. To gain a better appreciation of the G.C base-pair requirement, we isolated multiple mutants of this suppressor gene in which base-pairs of G.C were replaced by A.U. One active suppressor gene contained only A.U base-pairs on the anticodon stem, indicating that G.C base-pairs in this region of tRNA(Gln) are not essential for function. In contrast, replacement was not possible at two base-pairs on the D stem and at one base-pair on the T stem.  相似文献   

18.
Kamatani T  Yamamoto T 《Bio Systems》2007,90(2):362-370
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.  相似文献   

19.
20.
Total transfer RNAs were extracted from highly purified potato mitochondria. From quantitative measurements, the in vivo tRNA concentration in mitochondria was estimated to be in the range of 60 microM. Total potato mitochondrial tRNAs were fractionated by two-dimensional polyacrylamide gel electrophoresis. Thirty one individual tRNAs, which could read all sense codons, were identified by aminoacylation, sequencing or hybridization to specific oligonucleotides. The tRNA population that we have characterized comprises 15 typically mitochondrial, 5 'chloroplast-like' and 11 nuclear-encoded species. One tRNA(Ala), 2 tRNAs(Arg), 1 tRNA(Ile), 5 tRNAs(Leu) and 2 tRNAs(Thr) were shown to be coded for by nuclear DNA. A second, mitochondrial-encoded, tRNA(Ile) was also found. Five 'chloroplast-like' tRNAs, tRNA(Trp), tRNA(Asn), tRNA(His), tRNA(Ser)(GGA) and tRNA(Met)m, presumably transcribed from promiscuous chloroplast DNA sequences inserted in the mitochondrial genome, were identified, but, in contrast to wheat (1), potato mitochondria do not seem to contain 'chloroplast-like' tRNA(Cys) and tRNA(Phe). The two identified tRNAs(Val), as well as the tRNA(Gly), were found to be coded for by the mitochondrial genome, which again contrasts with the situation in wheat, where the mitochondrial genome apparently contains no tRNA(Val) or tRNA(Gly) gene (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号