首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A rapid 7-h fecal coliform (FC) test for the detection of FC in water has been developed. This membrane filter test utilizes a lightly buffered lactose-based medium (m-7-h FC medium) combined with a sensitive pH indicator system. FC colonies appeared yellow against a light purple background after incubation at 41.5 degrees C for 7 to 7.25 h. Comparison of FC test results showed that the mean verified FC count ratio (7-h FC count/24-h FC count) for surface water samples was 1.08. The mean FC count ratio (7-h FC count/24-h FC count) for unchlorinater wastewater ranged from 1.95 to 5.05. Verification of yellow FC colonies from m-7-h FC medium averaged 97%. Data from field tests on Lake Michigan bathing beach water samples showed that unverified 7-h FC counts averaged 96% of the 24-h FC counts. The 7-h FC test was found to be suitable for the examination of surface waters and unchlorinated sewage and could serve as an emergency test for detection of sewage or fecal contamination of potable water.  相似文献   

2.
The 7-h fecal coliform (FC) test for detection of FC organisms in water was evaluated to establish its validity and usefulness for emergency and disaster situations. The waters tested consisted of routine samples collected for public health surveillance and enforcement purposes. A total of 984 water samples from throughout California were assayed. These included samples from coastal salt waters, rivers, canals, and reservoirs, in addition to potable and miscellaneous freshwater sources. A portion of each sample was tested concurrently by both the 7-h FC test and the most-probable-number FC five-tube test. The 7-h FC test samples were incubated for 7 to 7.25 h at 41.5 degrees C. Overall, greater than 90% agreement was obtained between the methods in determining whether the water quality was acceptable or unacceptable. Statistical analysis of the 984 samples confirmed that the 7-h FC method was a suitable alternative to the most-probable-number FC method for evaluation of freshwater samples. During emergencies or disasters, the 7-h FC test could provide a means for detection of fecal contamination of water with results available in less than 1 day.  相似文献   

3.
The 7-h fecal coliform (FC) test for detection of FC organisms in water was evaluated to establish its validity and usefulness for emergency and disaster situations. The waters tested consisted of routine samples collected for public health surveillance and enforcement purposes. A total of 984 water samples from throughout California were assayed. These included samples from coastal salt waters, rivers, canals, and reservoirs, in addition to potable and miscellaneous freshwater sources. A portion of each sample was tested concurrently by both the 7-h FC test and the most-probable-number FC five-tube test. The 7-h FC test samples were incubated for 7 to 7.25 h at 41.5 degrees C. Overall, greater than 90% agreement was obtained between the methods in determining whether the water quality was acceptable or unacceptable. Statistical analysis of the 984 samples confirmed that the 7-h FC method was a suitable alternative to the most-probable-number FC method for evaluation of freshwater samples. During emergencies or disasters, the 7-h FC test could provide a means for detection of fecal contamination of water with results available in less than 1 day.  相似文献   

4.
This study was undertaken to better characterize the groups of total coliforms (TC) and fecal coliforms (FC) and to evaluate both groups as indicators of fecal contamination of drinking well water in a tropical climate (The Ivory Coast, West Africa). Isolated colonies obtained as TC or FC on membrane filters were identified using the API-20E system. From the well water samples, 58 golden-green colonies with a metallic sheen isolated on Endo medium (TC) were identified as Escherichia coli (55%), Enterobacter (26%), Klebsiella (14%), Proteus (3%), and Citrobacter (2%). Among 132 colonies isolated on Endo medium as non-TC (not showing the characteristic golden metallic sheen), 10% were identified as E. coli. The 196 blue colonies isolated on M-FC medium at 44.5 degrees C (FC) were identified as E. coli (66%), Klebsiella (12%), Enterobacter (10%), Citrobacter (5%), Salmonella (3%), Serratia (3%), Proteus (2%), and Yersinia (0.5%). Among 24 nonblue colonies on M-FC medium, none were identified as E. coli. Of the colonies isolated from human feces, E. coli represents 92% of the TC and 89% of the FC. Although these results are limited, they tend to confirm the greater specificity of the fecal coliform technique over that of total coliform for the detection of fecal contamination of untreated well water. From the results presented here and the observations of other workers, it is suggested that the use of FC instead of TC should be considered as the method of choice for determining drinking water pollution of untreated groundwater supplies.  相似文献   

5.
A rapid method for enumerating fecal coliforms in foods was developed employing an agar pour-plate medium. After 7 h of incubation at 41.5 +/- 0.05 C, this medium effectively allows the growth of fecal coliforms only. This rapid method was compared with the Association of Official Analytical Chemists multiple-tube dilution method for Escherichia coli, by using 21 samples of fresh, cut-up chicken and a surface rinsing procedure for sample preparation. Verification of picked colonies was carried out in EC broth using parallel incubation temperatures of 45.5 and 44.5 +/- 0.05 C. Verifications for these temperatures averaged 79 and 98%, respectively. All positively verified isolates were E. coli types I and II, as were the negatives. Geometric means for the verified 7-h plate count were within 12% of the standard means for both EC broth incubation temperatures.  相似文献   

6.
Eliminating rosolic acid from M-FC medium improves the MFC procedure by allowing higher fecal coliform colony recoveries with greater ease in counting. Samples of unchlorinated and chlorinated domestic sewage, creek, lake, and river water were analyzed for fecal coliforms by standard procedures. Results of 200 comparisons of fecal coliform counts on M-FC medium without and with rosolic acid showed that higher counts were obtained 71% of the time when rosolic acid was excluded without an overgrowth of background colonies. Results from analyzing chlorinated sewage showed that eliminating rosolic acid improved the recovery of fecal coliform bacteria by 49%. A total of 1,675 blue colonies and 766 nonblue colonies were verified. Of the 1,675 blue colonies, 1,566 were confirmed as fecal coliform bacteria, for a verification of 93.5%. The percent verification of nonblue colonies as noncoliform bacteria was 84.2% (644/766).  相似文献   

7.
Modification of M-FC medium by eliminating rosolic acid.   总被引:11,自引:10,他引:1       下载免费PDF全文
Eliminating rosolic acid from M-FC medium improves the MFC procedure by allowing higher fecal coliform colony recoveries with greater ease in counting. Samples of unchlorinated and chlorinated domestic sewage, creek, lake, and river water were analyzed for fecal coliforms by standard procedures. Results of 200 comparisons of fecal coliform counts on M-FC medium without and with rosolic acid showed that higher counts were obtained 71% of the time when rosolic acid was excluded without an overgrowth of background colonies. Results from analyzing chlorinated sewage showed that eliminating rosolic acid improved the recovery of fecal coliform bacteria by 49%. A total of 1,675 blue colonies and 766 nonblue colonies were verified. Of the 1,675 blue colonies, 1,566 were confirmed as fecal coliform bacteria, for a verification of 93.5%. The percent verification of nonblue colonies as noncoliform bacteria was 84.2% (644/766).  相似文献   

8.
The effect of sunlight on the enumeration of fecal coliform (FC) and fecal streptococcal (FS) bacteria when water samples are collected in containers and brought back to the laboratory for analysis or when the water samples are filtered through membranes on site was determined. FC and FS in raw sewage stored in clear glass or translucent polyethylene containers were resistant to the effects of sunlight. However, under the same conditions of storage and exposure to sunlight, 90% of FC and FS in sewage diluted 1:100 in seawater were inactivated within 13 to 32 min. When sewage was similarly diluted in stream water and exposed to sunlight, 90% of FC were inactivated after 28 to 38 min, whereas 90% of FS were not inactivated even after a 2-h exposure to sunlight. Other experiments showed that 90 to 99% of FC and FS retained on membranes were inactivated when these membranes were exposed to sunlight for 10 to 15 min. FS were inherently more resistant to sunlight inactivation than were FC. Finally, evidence was obtained to show that sunlight initially stresses the bacteria but eventually causes cell death.  相似文献   

9.
Interest in rapid bacterial detection methods for sanitary indicator bacteria in water prompted a study of the use of [U-14C]mannitol to detect fecal coliforms (FC). A simple method which used m-FC broth, membrane filtration, and two-temperature incubation (35 degrees C for 2 h followed by 44.5 degrees C for 2.5 h) was developed. [U-14C]mannitol was added to the medium, and the temperature was raised to 44.5 degrees C after 2 h at 35 degrees C. 14CO2 was collected as Ba14CO3 and assayed by liquid scintillation spectroscopy. Correlations were examined between FC cell numbers at the start of incubation (standard 24-h FC test) and Ba14CO3 counts per minute after 4.5 h. Results indicated that FC numbers ranging from 1 x 10(1) to 2.1 x 10(5) cells could be detected in 4.5 h. Within-sample reproducibility at all cell concentrations was good, but sample-to-sample reproducibility was variable. Comparisons between m-FC broth and m-FC broth modified by substituting D-mannitol for lactose indicated that the standard m-FC broth was the better test medium. Results from experiments in which dimethyl sulfoxide was used to increase permeability of FC to [U-14C]mannitol indicated no increase in 14CO2 production due to dimethyl sulfoxide. Detection of FC by this method may be useful for rapid estimation of FC levels in freshwater recreational areas, for estimating the quality of potable source water, and potentially for emergency testing of potable water, suspected of contamination due to distribution line breaks or cross-connections.  相似文献   

10.
Interest in rapid bacterial detection methods for sanitary indicator bacteria in water prompted a study of the use of [U-14C]mannitol to detect fecal coliforms (FC). A simple method which used m-FC broth, membrane filtration, and two-temperature incubation (35 degrees C for 2 h followed by 44.5 degrees C for 2.5 h) was developed. [U-14C]mannitol was added to the medium, and the temperature was raised to 44.5 degrees C after 2 h at 35 degrees C. 14CO2 was collected as Ba14CO3 and assayed by liquid scintillation spectroscopy. Correlations were examined between FC cell numbers at the start of incubation (standard 24-h FC test) and Ba14CO3 counts per minute after 4.5 h. Results indicated that FC numbers ranging from 1 x 10(1) to 2.1 x 10(5) cells could be detected in 4.5 h. Within-sample reproducibility at all cell concentrations was good, but sample-to-sample reproducibility was variable. Comparisons between m-FC broth and m-FC broth modified by substituting D-mannitol for lactose indicated that the standard m-FC broth was the better test medium. Results from experiments in which dimethyl sulfoxide was used to increase permeability of FC to [U-14C]mannitol indicated no increase in 14CO2 production due to dimethyl sulfoxide. Detection of FC by this method may be useful for rapid estimation of FC levels in freshwater recreational areas, for estimating the quality of potable source water, and potentially for emergency testing of potable water, suspected of contamination due to distribution line breaks or cross-connections.  相似文献   

11.
Two media were developed that allowed both a total coliform count and an Escherichia coli count to be determined on the same medium after 24 h of incubation at 35 degrees C. The new media were tested along with two standard media on 10 surface water and 7 sewage samples. The experimental media yielded equivalent or higher counts relative to the standard media and recovered more specifically the desired indicator groups as determined by colony identification.  相似文献   

12.
A simple method for detection and enumeration of alkylbenzenesulfonate (ABS)-degrading microorganisms by using agar plates was developed and used in microbiological studies of coastal marine and polluted river waters. The method depends upon the color responses of neutral red in alkaline medium. Neutral red changes from pink, when it enters into ABS micelles, to yellow, when the ABS is degraded, and does not form micelles. When neutral red-tris(hydroxymethyl)-aminomethane buffer solution and then cationic surfactant solution were sprayed onto the agar surface of ABS-nutrient agar cultures, transparent haloes appeared around the colonies of ABS-degrading microorganisms against a pink background. Viable counts of ABS-degrading bacteria isolated from both seawater and freshwater environments were considerably higher in polluted waters than in less polluted areas. Viable counts of ABS-degrading bacteria averaged 1.5 x 105/ml in samples from the surface water of polluted Tokyo Bay and 3.0 x 104/ml in samples from the surface water of polluted Tamagawa River but were fewer in number in samples from less polluted waters.  相似文献   

13.
Two media were developed that allowed both a total coliform count and an Escherichia coli count to be determined on the same medium after 24 h of incubation at 35 degrees C. The new media were tested along with two standard media on 10 surface water and 7 sewage samples. The experimental media yielded equivalent or higher counts relative to the standard media and recovered more specifically the desired indicator groups as determined by colony identification.  相似文献   

14.
Fecal coliforms (FC) counts were compared with Escherichia coli counts in differently contaminated freshwater samples (n = 166). FC were enumerated by plate count on triphenyl 2,3,5-tetrazolium chloride Tergitol medium. Escherichia coli were enumerated by the most probable number microplate method based on the detection of glucuronidase activity. FC and E. coli counts were highly correlated; an average E. coli/FC ratio equal to 0.77 was found, meaning that on average, 77% of FC were E. coli. Knowing the E. coli/FC ratio allows us to convert the historical microbiological quality data expressed in FC counts into E. coli abundance and thus to compare with present and future monitoring data that are (or will be) based on E. coli enumeration.  相似文献   

15.
A single-step most-probable-number method for enumerating fecal coliforms in sewage treatment plant effluents is described. The method requires the use of only one lactose-based medium and a single incubation temperature of 44.5 degrees C, and it can be completed in 18 h or less, as compared with up to 72 h for the standard most-probable-number method. The appearance of growth is the sole criterion used for designating positives, which can be determined either by increases in the electrical impedance ratio of inoculated medium, as compared to an uninoculated control using a Bactometer model 32, or by visual examination of inoculated medium for turbidity. In trials with 53 samples of unchlorinated sewage treatment plant effluent, fecal coliform counts by the single-step most-probable-number method, throughout a range of less than 10 to almost 10(7) fecal coliforms per 100 ml of effluent, were in excellent agreement with counts abtained by the standard most-probable-number procedure. Similar agreement was obtained in comparative trials with 31 chlorinated effluent samples from two sewage treatment plants. Overall, 87% of 452 positives were confirmed as containing fecal coliforms. The applicability of the single-step most-probable-number method to automated sewage treatment plant operations is discussed.  相似文献   

16.
A single-step most-probable-number method for enumerating fecal coliforms in sewage treatment plant effluents is described. The method requires the use of only one lactose-based medium and a single incubation temperature of 44.5 degrees C, and it can be completed in 18 h or less, as compared with up to 72 h for the standard most-probable-number method. The appearance of growth is the sole criterion used for designating positives, which can be determined either by increases in the electrical impedance ratio of inoculated medium, as compared to an uninoculated control using a Bactometer model 32, or by visual examination of inoculated medium for turbidity. In trials with 53 samples of unchlorinated sewage treatment plant effluent, fecal coliform counts by the single-step most-probable-number method, throughout a range of less than 10 to almost 10(7) fecal coliforms per 100 ml of effluent, were in excellent agreement with counts abtained by the standard most-probable-number procedure. Similar agreement was obtained in comparative trials with 31 chlorinated effluent samples from two sewage treatment plants. Overall, 87% of 452 positives were confirmed as containing fecal coliforms. The applicability of the single-step most-probable-number method to automated sewage treatment plant operations is discussed.  相似文献   

17.
Two media used to detect fecal coliforms in water by membrane filtration, m-FC and m-TEC, were modified and supplemented with the chromogenic substrate 5-bromo-6-chloro-3-indoyl-beta-D-glucuronide (BCIG) and were compared for quantitative recovery of Escherichia coli. Student's t test of data from 181 water samples of sewage, rivers, lakes, and wells did not demonstrate any statistically significant differences (P = 0.05) in the enumeration of E. coli with these media. Target colonies were confirmed to be E. coli at rates of 98.6 and 97.3% by using FC-BCIG and TEC-BCIG media, respectively. Glucuronidase-negative isolates of E. coli were encountered at the same frequency (6.0%) on both media. This collaborative study demonstrated that either modified basal medium could be used successfully for detection of E. coli in various nontreated waters within 24 h.  相似文献   

18.
Runoff from a cow-calf pasture in eastern Nebraska was monitored for total coliforms (TC), fecal coliforms (FC), and fecal streptococci (FS) during 1976, 1977, and 1978. Bacteriological counts in runoff from both grazed and ungrazed areas generally exceeded recommended water quality standards. The FC group was the best indicator group of the impact of grazing. Rainfall runoff from the grazed area contained 5 to 10 times more FC than runoff from the fenced, ungrazed area. There was little difference in TC counts between the two areas, but FS counts were higher in runoff from the ungrazed area and reflected the contributions from wildlife. Recommended bacteriological water quality standards, developed for point source inputs, may be inappropriate for characterizing nonpoint source pollution from pasture runoff. The FC/FS ratio in pasture runoff was useful in identifying the relative contributions of cattle and wildlife. Ratios below 0.05 were indicative of wildlife sources and ratios above 0.1 were characteristic of grazing cattle. Occasions when the FC/FS ratio of diluted cattle waste exceeded one resulted from differential aftergrowth and die-off between FC and FS. The FC/FS ratio and percentage of Streptococcus bovis in pasture runoff are useful indicators for evaluating the effectiveness of livestock management practices for minimizing bacterial contamination of surface water. The importance of choice of medium for the enumeration of FS in runoff derived from cattle wastes is discussed.  相似文献   

19.
Tests of two leading brands of membrane filters used for enumerating fecal coliform bacteria showed that Gelman GN-6 filters recovered statistically more colonies of bacteria than did Millipore HAWG 047SO filters from pure cultures incubated at either 35 C (the optimal growth temperature) or 44.5 C (the standard temperature for the fecal coliform test). Standard membrane filter procedures with M-FC broth base were used to enumerate the organisms. Densities of colonies incubated on Gelman filters at 44.5 C averaged 2.3 times greater than those on Millipore filters. Plate counts of the bacteria at both temperatures indicated that incubation at 44.5 C did not inhibit propagation of fecal coliform bacteria. For the pour plates, M-FC broth base plus 1.5% agar was used. This modified medium compared favorably to plate count agar for enumerating Escherichia coli. At 35 and 44.5 C, colony counts on Gelman filters agreed closely with plate counts prepared concurrently, but Millipore counts were consistently lower than plate counts, especially at 44.5 C. Comparative analyses of river water for fecal coliform bacteria by the membrane filter technique gave results comparable to those for the pure cultures.  相似文献   

20.
Bacteriological Quality of Runoff Water from Pastureland   总被引:4,自引:2,他引:2       下载免费PDF全文
Runoff from a cow-calf pasture in eastern Nebraska was monitored for total coliforms (TC), fecal coliforms (FC), and fecal streptococci (FS) during 1976, 1977, and 1978. Bacteriological counts in runoff from both grazed and ungrazed areas generally exceeded recommended water quality standards. The FC group was the best indicator group of the impact of grazing. Rainfall runoff from the grazed area contained 5 to 10 times more FC than runoff from the fenced, ungrazed area. There was little difference in TC counts between the two areas, but FS counts were higher in runoff from the ungrazed area and reflected the contributions from wildlife. Recommended bacteriological water quality standards, developed for point source inputs, may be inappropriate for characterizing nonpoint source pollution from pasture runoff. The FC/FS ratio in pasture runoff was useful in identifying the relative contributions of cattle and wildlife. Ratios below 0.05 were indicative of wildlife sources and ratios above 0.1 were characteristic of grazing cattle. Occasions when the FC/FS ratio of diluted cattle waste exceeded one resulted from differential aftergrowth and die-off between FC and FS. The FC/FS ratio and percentage of Streptococcus bovis in pasture runoff are useful indicators for evaluating the effectiveness of livestock management practices for minimizing bacterial contamination of surface water. The importance of choice of medium for the enumeration of FS in runoff derived from cattle wastes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号