首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity.  相似文献   

2.
Slit scanning flow cytometry has been applied to the analysis of the cell cycle and cell-cycle-dependent events in Saccharomyces cerevisiae, yielding information on the low-resolution spatial distribution of cellular components in single cells of unperturbed cell populations. Because this process is rapid, large numbers of cells can be analyzed to give distributions of parameters in a given population. To study asymmetric cell division and cell cycle progression, forward-angle light scattering (FALS) signals together with fluorescence signals from acriflavine-stained nuclei have been measured in cells from exponentially growing yeast populations. An algorithm has been developed that assigns the position of the bud neck in the FALS signals so that both FALS and DNA signals can be analyzed in terms of the contributions from the mother cell and the cell bud. The data indicate that mother cell FALS, on average, remains constant while FALS due to the cell bud increases as a cell progresses through the cell cycle. By identifying mitotic cells and measuring their properties, we have found that the coefficient of variation for the distribution of FALS is smallest within the dividing cell population and largest within the newborn cell population, in accordance with the critical size control mechanism of yeast cell growth. The use of this experimental approach to provide data for statistical population models is discussed.  相似文献   

3.
With the aid of a voltage-sensitive oxonol dye, flow cytometry was used to measure relative changes in resting membrane potential (Vm) and forward angle light scatter (FALS) profiles of a differentiating/differentiated murine neuroblastoma cell line (N1E-115). Electrophysiological differentiation was characterized by Vm establishment. The (Vm)-time profile was found to be seed cell concentration-dependent for cell densities of less than 2 × 104 cells/cm2. At higher initial cell densities, under differentiating culture conditions, Vm development commenced on day 2 and reached a steady-state on day 12. The relative distribution of differentiated cells between low and high FALS has been proposed as a potential culture electrophysiological differentiation state index. These experiments offer a general methodology to characterize cultured excitable cells of nervous system origin, with respect to electrophysiological differentiation. This information is valuable in studies employing neuroblastoma cells as in vitro screening models for safety/hazard evaluation and/or risk assessment of therapeutical and industrial chemicals under development. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Flow cytometry was used to study starvation of Escherichia coli in artificial sea water. Flow cytometric narrow-angle light scatter was compared and assessed in relation to the cell sizes obtained by scanning electron microscopy at low temperature, and by image analysis. A correlation between narrow-angle light scatter and cell size was not observed, although an acceptable correlation (γ= -0.845) between narrow-angle light scatter and the starvation period was observed. On the other hand, the distribution of narrow-angle light scatter at any given moment of culture is asymmetric and may be associated with the cell size distribution at the specific moment of starvation.  相似文献   

5.
Cell cycle, cell size and rhodamine 123 fluorescence in cell populations of two batch cultures were analysed and quantified with a fluorescence-activated cell sorter (FACS). Two cultures derived from either exponential or stationary phase innocula were investigated in order to demonstrate the dependency of the subsequent cell growth on innoculum condition. The results demonstrated that the level of activity of cells in the innoculum culture could have a significant effect on cellular activity during the initial phase of the inoculated culture, as it advances through its growth cycle. Positive correlation was found between the cell size and mitochondrial activity (as measured by rhodamine 123 uptake) with S and G2 fractions as the cell progressed through the cell cycle. The enumeration of the fractions of cell cycle phases has helped in prediction of the changes in cell numbers following perturbation of the culture condition.  相似文献   

6.
7.
Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of thermal adaptation will help clarify the mechanisms driving these phenotypic responses.  相似文献   

8.
BACKGROUND: In the past decade, flow cytometry has become a useful and precise alternative to microscopic bacterial cell counts in aquatic samples. However, little evidence of its usefulness for the evaluation of bacterial biovolumes has emerged in from the literature. METHODS: The light scattering and cell volume of starved bacterial strains and natural bacterial communities from the Black Sea were measured by flow cytometry and epifluorescence microscopy, respectively, in order to establish a relationship between light scattering and cell volume. RESULTS: With the arc-lamp flow cytometer, forward angle light scatter (FALS) was related to cell size in both the starved strains and natural communities, although regression parameters differed. We tested the predictive capacity of the FALS verous cell size relationship in a bacterial community from the North Sea. That analysis showed that a reliable bacterial biovolume prediction of a natural bacterial community can be obtained from FALS using a model generated from natural bacterial community data. CONCLUSIONS: Bacterial biovolume is likely to be related to FALS measurements. It is possible to establish a generally applicable model derived from natural bacterial assemblages for flow cytometric estimation of bacterial biovolumes by light scatter.  相似文献   

9.
Summary Growth hormone production by a rat pituitary tumor cell line (GH1) was measured during lag, exponential, and plateau phases of growth in different culture media. Growth hormone secretion was low during lag and early exponential phase; it increased late in the exponential phase and continued to increase during the plateau phase. This biphasic pattern of growth hormone production was observed in all media and sera utilized. Both the doubling time and growth hormone production were influenced by the choice of media and sera. In addition, the length of time in culture affected the growth fraction with passage level 40 GH1 cells having a 79% growth fraction, whereas the growth fraction of passage level 100 cells was 95%. Using the population doubling time as a criterion for a choice of medium, F-10 medium supplemented with 20% fetal bovine serum consistently yielded the most rapid doubling time (32 hr), whereas Dulbecco's MEM supplemented with 15% horse serum and 2.5% fetal bovine serum yielded the greatest plateau cell density. Growth hormone secretion and the population doubling times were directly related to culture conditions including length of time in culture, choice of tissue culture media, choice of sera, and the phase of cell growth (lag, exponential or plateau).  相似文献   

10.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号