首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A novel procedure for efficient computation of three-dimensional protein structures from nuclear magnetic resonance (n.m.r.) data in solution is described, which is based on using the program DIANA in combination with the supporting programs CALIBA, HABAS and GLOMSA. The first part of this paper describes the new programs DIANA. CALIBA and GLOMSA. DIANA is a new, fully vectorized implementation of the variable target function algorithm for the computation of protein structures from n.m.r. data. Its main advantages, when compared to previously available programs using the variable target function algorithm, are a significant reduction of the computation time, and a novel treatment of experimental distance constraints involving diastereotopic groups of hydrogen atoms that were not individually assigned. CALIBA converts the measured nuclear Overhauser effects into upper distance limits and thus prepares the input for the previously described program HABAS and for DIANA. GLOMSA is used for obtaining individual assignments for pairs of diastereotopic substituents by comparison of the experimental constraints with preliminary results of the structure calculations. With its general outlay, the presently used combination of the four programs is particularly user-friendly. In the second part of the paper, initial results are presented on the influence of the novel DIANA treatment of diastereotopic protons on the quality of the structures obtained, and a systematic study of the central processing unit times needed for the same protein structure calculation on a range of different, commonly available computers is described.  相似文献   

2.
A determination of the solution conformation of the proteinase inhibitor IIA from bull seminal plasma (BUSI IIA) is described. Two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) was used to obtain a list of 202 distance constraints between individually assigned hydrogen atoms of the polypeptide chain, to identify the positions of the three disulfide bridges, and to locate the single cis peptide bond. Supplementary geometric constraints were derived from the vicinal spin-spin couplings and the locations of certain hydrogen bonds, as determined by nuclear magnetic resonance (n.m.r.). Using a new distance geometry program (DISGEO) which is capable of computing all-atom structures for proteins the size of BUSI IIA, five conformers were computed from the NOE distance constraints alone, and another five were computed with the supplementary constraints included. Comparison of the different structures computed from the n.m.r. data among themselves and with the crystal structures of two homologous proteins shows that the global features of the conformation of BUSI IIA (i.e. the overall dimensions of the molecule and the threading of the polypeptide chain) were well-defined by the available n.m.r. data. In the Appendix, we describe a preliminary energy refinement of the structure, which showed that the constraints derived from the n.m.r. data are compatible with a low energy spatial structure.  相似文献   

3.
Sequence-specific resonance assignments for the isolated second or b domain of the bovine seminal fluid protein PDC-109 have been obtained from analysis of two-dimensional 1H NMR experiments recorded at 500 MHz. These assignments include the identification of all aromatic and most aliphatic amino acid resonances. Stereospecific assignment of resonances stemming from the Val2 CH3 gamma,gamma' groups and from seven CH beta,beta' geminal pairs has been accomplished by analysis of 3J alpha beta coupling constants in conjunction with patterns of cross-peak intensities observed in two-dimensional nuclear Overhauser effect (NOESY) spectra. Analysis of NOESY and 3J alpha NH data reveals a small antiparallel beta-sheet involving stretches containing residues 25-28 and 39-42, a cis-proline residue (Pro4), antiparallel strands consisting of residues 1-3, 5-7, and 10-13, and an aromatic cluster composed of Tyr7, Trp26, and Tyr33. The results of distance geometry and restrained molecular dynamics calculations indicate that the global fold of the PDC-109 b domain, a type II module related to those found in fibronectin, is somewhat different from that predicted by modeling the structure on the basis of homology between type II and kringle units. A shallow depression in the molecular surface which presents a solvent-exposed hydrophobic area--a potential ligand-binding site-is identified in the NMR-based models.  相似文献   

4.
The solution structure of a recombinant tissue-type plasminogen activator kringle 2 domain, complexed with the antifibrinolytic drug 6-aminohexanoic acid (6-AHA) was determined via 1H nuclear magnetic resonance spectroscopy and dynamical simulated annealing calculations. The structure determination is based on 610 intramolecular kringle 2 and 14 intermolecular kringle 2-6-AHA interproton distance restraints, as well as on 82 torsion angle restraints. Three sets of simulated annealing structures were computed from three different classes of starting structures: (1) random conformations devoid of disulfide bridges; (2) random conformations that contain correct disulfide bonds; and (3) a folded conformation modeled after the homologous prothrombin kringle 1 X-ray crystallographic structure. All three sets of structures are well defined, with averaged atomic root-mean-square deviations between individual structures and mean set structures of 0.77, 0.99 and 0.70 A for backbone atoms, and 1.36, 1.55 and 1.41 A for all atoms, respectively. Kringle 2 is an oblate ellipsoid with overall dimensions of approximately 34 A x 30 A x 17 A. It exhibits a compact globular conformation characterized by a number of turns and loop elements as well as by one right-handed alpha-helix and five (1 extended and 4 rudimentary) antiparallel beta-sheets. The extended beta-sheet exhibits a right-handed twist. Close van der Waals' contacts between the Cys22-Cys63 and Cys51-Cys75 disulfide bridges and the central hydrophobic core composed of the Trp25, Leu46, His48a and Trp62 side-chains are among the distinguishing features of the kringle 2 fold. The binding site for 6-AHA appears as a rather exposed cleft with a negatively charged locus defined by the Asp55 and Asp57 side-chains, and with an aromatic pocket structured by the Tyr36, Trp62, His64 and Trp72 side-chains. The Trp62 and His64 rings line the back surface of the pocket, while the Tyr36 and Trp72 rings confine it from two sides. The Trp62 and Trp72 indole rings conform a V-shaped groove. The methyl groups of Val35 also contribute lipophilic character to the ligand-interacting surface. It is suggested that the positively charged side-chains of Lys34 and, potentially, Arg69 may favor interactions with the carboxylate group of the ligand. The Trp25 and Tyr74 aromatic rings, although conserved elements of the binding site structure, seem not to undergo direct contacts with the ligand.  相似文献   

5.
The NMR solution structure of the pheromone Er-11, a 39-residue protein from the ciliated protozoan Euplotes raikovi, was calculated with the distance geometry program DIANA from 449 NOE upper distance constraints and 97 dihedral angle constraints, and the program OPAL was employed for structure refinement by molecular mechanics energy minimization in a water bath. For a group of 20 conformers used to characterize the solution structure, the average of the pairwise RMS deviations from the mean structure calculated for the backbone heavy atoms N, C alpha, and C' of residues 2-38 was 0.30 A. The molecular architecture is dominated by an up-down-up bundle of three short helices with residues 2-9, 12-19, and 22-32, which is closely similar to the previously determined structures of the homologous pheromones Er-1, Er-2, and Er-10. This finding provides structural evidence for the capability shown by these pheromones to compete with each other in binding reactions to their cell-surface receptors.  相似文献   

6.
The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.  相似文献   

7.
A high-quality three-dimensional structure of the bovine pancreatic trypsin inhibitor (BPTI) in aqueous solution was determined by 1H nuclear magnetic resonance (n.m.r.) spectroscopy and compared to the three available high-resolution X-ray crystal structures. A newly collected input of 642 distance constraints derived from nuclear Overhauser effects and 115 dihedral angle constraints was used for the structure calculations with the program DIANA, followed by restrained energy minimization with the program AMBER. The BPTI solution structure is represented by a group of 20 conformers with an average root-mean-square deviation (RMSD) relative to the mean solution structure of 0.43 A for backbone atoms and 0.92 A for all heavy atoms of residues 2 to 56. The pairwise RMSD values of the three crystal structures relative to the mean solution structure are 0.76 to 0.85 A for the backbone atoms and 1.24 to 1.33 A for all heavy atoms of residues 2 to 56. Small local differences in backbone atom positions between the solution structure and the X-ray structures near residues 9, 25 to 27, 46 to 48 and 52 to 58, and conformational differences for individual amino acid side-chains were analyzed for possible correlations with intermolecular protein-protein contacts in the crystal lattices, using the pairwise RMSD values among the three crystal structures as a reference.  相似文献   

8.
Kringle 4 is an autonomous structural and folding domain within the proenzyme plasminogen. Homologous domains are found throughout the blood clotting and fibrinolytic proteins. In this paper, we present the almost complete assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the kringle 4 domain of human plasminogen. A detailed structural analysis has been completed. The sequential pattern of nuclear Overhauser enhancements indicated little regular secondary structure but rather a series of turns and loops connecting beta-strands. A small stretch of antiparallel beta-sheet was identified between the residues 61 to 63 and 71 to 73 and the close proximity of other strands was determined from two-dimensional nuclear Overhauser enhancement spectra. Slowly exchanging amide (NH) resonances were found to be associated with residues of the beta-sheet and neighbouring strands that support the hydrophobic core of the domain. A total of 526 interproton distance constraints and two hydrogen bonds were specified as input to the distance geometry program DISGEO. Tertiary structures were produced that were consistent with the n.m.r. data. The structures were compared with that of our earlier model based on n.m.r. studies and with that of prothrombin fragment 1 determined crystallographically.  相似文献   

9.
PDC-109, a protein of unknown function, is a major component of bovine seminal plasma. Using a computer program designed to detect evolutionary relationships between proteins, I find that the PDC-109 protein is similar to the gelatin-binding domain of bovine fibronectin and part of a kringle domain of human tissue-type plasminogen activator (t-PA). The computer-based comparison of the amino acid sequence of PDC-109 with that of the gelatin-binding domain of fibronectin and part of the second kringle domain of t-PA yields scores that are 15.5 standard deviations and 7.8 standard deviations higher, respectively, than were obtained with a comparison of randomized sequences of these proteins. The probability (p) of getting these scores by chance is less than 10(-50) and 3 X 10(-15), respectively. The similarity between the amino acid sequences of PDC-109 and the gelatin-binding domain in fibronectin and the kringle of t-PA suggests some approaches for identifying the functions of PDC-109. Both t-PA and the gelatin-binding domain of fibronectin have adhesive functions, and the gelatin-binding domain promotes viral transformation of fibroblasts in culture. These functions may be associated with the PDC-109 protein.  相似文献   

10.
The three-dimensional solution structure of recombinant bovine myristoylated recoverin in the Ca2+-free state has been refined using an array of isotope-assisted multidimensional heteronuclear NMR techniques. In some experiments, the myristoyl group covalently attached to the protein N-terminus was labeled with 13C and the protein was unlabeled or vice versa; in others, both were 13C-labeled. This differential labeling strategy was essential for structural refinement and can be applied to other acylated proteins. Stereospecific assignments of 41 pairs of -methylene protons and 48 methyl groups of valine and leucine were included in the structure refinement. The refined structure was constructed using a total of 3679 experimental NMR restraints, comprising 3242 approximate interproton distance restraints (including 153 between the myristoyl group and the polypeptide), 140 distance restraints for 70 backbone hydrogen bonds, and 297 torsion angle restraints. The atomic rms deviations about the averaged minimized coordinate positions for the secondary structure region of the N-terminal and C-terminal domains are 0.44 ± 0.07 and 0.55 ± 0.18 Å for backbone atoms, and 1.09 ± 0.07 and 1.10 ± 0.15 Å for all heavy atoms, respectively. The refined structure allows for a detailed analysis of the myristoyl binding pocket. The myristoyl group is in a slightly bent conformation: the average distance between C1 and C14 atoms of the myristoyl group is 14.6 Å. Hydrophobic residues Leu28, Trp31, and Tyr32 form a cluster that interacts with the front end of the myristoyl group (C1-C8), whereas residues Phe49, Phe56, Tyr86, Val87, and Leu90 interact with the tail end (C9-C14). The relatively deep hydrophobic pocket that binds the myristoyl group (C14:0) could also accommodate other naturally occurring acyl groups such as C12:0, C14:1, and C14:2 chains.  相似文献   

11.
The major protein of bovine seminal plasma, PDC-109 binds to choline phospholipids present on the sperm plasma membrane upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. PDC-109 also shares significant similarities with small heat shock proteins and exhibits chaperone-like activity (CLA). Although the polydisperse nature of this protein has been shown to be important for its CLA, knowledge of other factors responsible for such an activity is scarce. Since surface exposure of hydrophobic residues is known to be an important factor which modulates the CLA of chaperone proteins, in the present study we have probed the surface hydrophobicity of PDC-109 using bisANS and ANS. Further, effect of phospholipids on the structure and chaperone-like activity of PDC-109 was studied. Presence of DMPC was found to increase the CLA of PDC-109 significantly, which could be due to the considerable exposure of hydrophobic regions on the lipid-protein recombinants, which can interact productively with the nonnative structures of target proteins, resulting in their protection. However, inclusion of DMPG instead of DMPC did not significantly alter the CLA of PDC-109, which could be due to the lower specificity of PDC-109 for DMPG as compared to DMPC. Cholesterol incorporation into DMPC membranes led to a decrease in the CLA of PDC-109-lipid recombinants, which could be attributed to reduced accessibility of hydrophobic surfaces to the substrate protein(s). These results underscore the relevance of phospholipid binding and hydrophobicity to the chaperone-like activity of PDC-109.  相似文献   

12.
A set of conformational restraints derived from nuclear magnetic resonance (n.m.r.) measurements on solutions of the basic pancreatic trypsin inhibitor (BPTI) was used as input for distance geometry calculations with the programs DISGEO and DISMAN. Five structures obtained with each of these algorithms were systematically compared among themselves and with the crystal structure of BPTI. It is clear that the protein architecture observed in single crystals of BPTI is largely preserved in aqueous solution, with local structural differences mainly confined to the protein surface. The results confirm that protein conformations determined in solution by combined use of n.m.r. and distance geometry are a consequence of the experimental data and do not depend significantly on the algorithm used for the structure determination. The data obtained further provide an illustration that long intramolecular distances in proteins, which are comparable with the radius of gyration, are defined with high precision by relatively imprecise nuclear Overhauser enhancement measurements of a large number of much shorter distances.  相似文献   

13.
The three-dimensional structure of acyl-coenzyme A binding protein as encoded by the recombinant gene in Escherichia coli has been determined using nuclear magnetic resonance (n.m.r.) spectroscopy. The structure consists of four alpha-helices A1 (residues 3 to 15), A2 (residues 20 to 36), A3 (residues 51 to 60), and A4 (residues 65 to 85). A1 and A4, and A2 and A3, run in parallel pairs. A2 runs anti-parallel to A1 and A4. The three-dimensional structure of the protein is reminiscent of a shallow bowl with a rim. The "rim" is characterized by many polar and charged groups, whereas the inside and outside surface is predominantly hydrophobic with patches of uncharged polar hydroxyl groups of threonyl, serinyl and tyrosyl residues. The inside bottom contains through two epsilon-amino groups of lysine residues (Lys13 and Lys32) suggesting that the binding site for the nucleotide part of the acyl-coenzyme A part of the ligand molecule is at the inside surface of the bowl. The structure determination was done on the basis of measurements of the intensities of nuclear Overhauser effects (NOEs) and coupling constants that were translated into interatom distance restraints for 833 atom pairs, and 87 dihedral angle restraints, of which 23 were in chiral centers. In all, 42 hydrogen bonds were identified by n.m.r. and provided an additional 84 distance restraints. A total of 20 structures were calculated and the structures can be aligned to a root-mean-square deviation of 0.5 A for the backbone atoms of the residues in the four helices. A region of six residues could not be defined by the restraints obtained by n.m.r. The program Pronto was used for the spectrum analysis in general, and especially for the assignment of the individual NOEs, the integration of the cross peaks, and the measurements of the coupling constants. The programs DIANA and X-PLOR have been used in the structure calculations and evaluations.  相似文献   

14.
Summary A new method for refining three-dimensional (3D) NMR structures of proteins is described, which takes account of the complete relaxation pathways. Derivatives of the NOE intensities with respect to the dihedral angles are analytically calculated, and efficiently evaluated with the use of a filter technique for identifying the dominant terms of these derivatives. This new method was implemented in the distance geometry program DIANA. As an initial test, we refined 30 rigid distorted helical structures, using a simulated data set of NOE distance constraints for a rigid standard -helix. The final root-mean-square deviations of the refined structures relative to the standard helix were less than 0.1 Å, and the R-factors dropped from values between 7% and 32% to values of less than 0.5% in all cases, which compares favorably with the results from distance geometry calculations. In particular, because spin diffusion was not explicitly considered in the evaluation of exact1H–1H distances corresponding to the simulated NOE intensities, a group of nearly identical distance geometry structures was obtained which had about 0.5 Å root-mean-square deviation from the standard -helix. Further test calculations using an experimental NOE data set recorded for the protein trypsin inhibitor K showed that the complete relaxation matrix refinement procedure in the DIANA program is functional also with systems of practical interest.Abbreviations RMSD root-mean-square deviation - NOE nuclear Overhauser enhancement - NOESY 2-dimensional nuclear Overhauser enhancement spectroscopy - CPU central processing unit  相似文献   

15.
Sperm reservoirs have been found in the oviducts of several species of mammals. In cattle, the reservoir is formed by the binding of sperm to fucose-containing glycoconjugates on the surface of oviductal epithelial cells. A fucose-binding molecule was purified from sperm extracts and identified as PDC-109 (BSP-A1/A2), a protein that is secreted by the seminal vesicles and associates with the plasma membrane of sperm upon ejaculation. The objective of this study was to demonstrate that PDC-109 promotes bull sperm binding to oviductal epithelium. PDC-109 was purified from bovine seminal plasma, and polyclonal antibodies were produced in rabbits. The antibodies detected PDC-109 on ejaculated sperm by indirect immunofluorescence and Western blots of extracts, but PDC-109 was not detected on epididymal sperm. When added to epididymal sperm, purified PDC-109 was absorbed onto the plasma membrane overlying the acrosome, as demonstrated by indirect immunofluorescence and by labeling sperm directly with fluorescein-conjugated PDC-109. When added to explants of oviductal epithelium, significantly fewer epididymal sperm than ejaculated sperm became bound. Addition of PDC-109 to epididymal sperm increased epithelial binding to the level observed for ejaculated sperm. In addition, binding of ejaculated sperm to oviductal epithelium was inhibited by addition of excess soluble PDC-109. Ejaculated sperm lost the ability to bind to oviductal epithelium after heparin-induced capacitation, but treatment with PDC-109 restored binding. These results demonstrate that PDC-109 enables sperm to bind to oviductal epithelium and plays a major role in formation of the bovine oviductal sperm reservoir.  相似文献   

16.
The crystal structures of two closely related members of the multigene family of wheat lectins (isolectins 1 and 2) have been compared. These isolectins differ at five sequence positions, one being located in the saccharide binding site modulating ligand affinity. Crystals of the two isolectins are closely isomorphous (space group C2). The atomic models are based on structure refinement at 1.8 A resolution in the case of isolectin 2 (WGA2) and 2.0 A resolution in the case of isolectin 1 (WGA1). Refinement results for WGA1, recently completed with a crystallographic R-factor of 16.5% (Fo greater than 3 sigma (Fo)), are presented. Examination of a difference Fourier map, [FWGA2-FWGA1], at 2.0 A resolution and direct superposition of the two models indicated an overall close match of the two structures. Local differences are observed in the region of residues 44 to 69, where three sequence differences occur, and at highly mobile external residues on the surface. The average positional discrepancy (root-mean-square delta r) for corresponding protein atoms in the two crystal structures is 0.64 A for independent protomer I and 0.61 A for protomer II (0.29 A and 0.30 A for main-chain atoms). The mean atomic temperature factors are very similar 20.9 versus 22.0 A2). Regions of high flexibility coincide in the two isolectin structures. Of the 210 water sites identified in WGA1, 144 have corresponding positions in WGA2. A set of 51 well-ordered sites was found to be identical in the two independent environments in both structures, and was considered to be important for structure stabilization. Both of the unique sugar binding sites superimpose very closely, exhibiting root-mean-square positional differences ranging from 0.29 A to 0.42 A. The side-chains of the critical tyrosine residues, Tyr73 (P-site) and Tyr159 (S-site), superimpose best, while other highly flexible aromatic groups (Tyr64 and Trp150) and several water sites display large differences in position (0.5 to 1.0 A) and high temperature factors. The aromatic side-chains of Tyr66 in WGA1 and His66 in WGA2 are oriented similarly.  相似文献   

17.
PDC-109, the major protein of bovine seminal plasma, binds to sperm plasma membranes upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. The binding process is mediated primarily by the specific interaction of PDC-109 with choline-containing phospholipids. In the present study the kinetics and mechanism of the interaction of PDC-109 with phospholipid membranes were investigated by the surface plasmon resonance technique. Binding of PDC-109 to different phospholipid membranes containing 20% cholesterol (wt/wt) indicated that binding occurs by a single-step mechanism. The association rate constant (k(1)) for the binding of PDC-109 to dimyristoylphosphatidylcholine (DMPC) membranes containing cholesterol was estimated to be 5.7 x 10(5) M(-1) s(-1) at 20 degrees C, while the values of k(1) estimated at the same temperature for the binding to membranes of negatively charged phospholipids such as dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA) containing 20% cholesterol (wt/wt) were at least three orders of magnitude lower. The dissociation rate constant (k(-1)) for the DMPC/PDC-109 system was found to be 2.7 x 10(-2) s(-1) whereas the k(-1) values obtained with DMPG and DMPA was about three to four times higher. From the kinetic data, the association constant for the binding of PDC-109 to DMPC was estimated as 2.1 x 10(7) M(-1). The association constants for different phospholipids investigated decrease in the order: DMPC > DMPG > DMPA > DMPE. Thus the higher affinity of PDC-109 for choline phospholipids is reflected in a faster association rate constant and a slower dissociation rate constant for DMPC as compared to the other phospholipids. Binding of PDC-109 to dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine, which are also zwitterionic, was found to be very weak, clearly indicating that the charge on the lipid headgroup is not the determining factor for the binding. Analysis of the activation parameters indicates that the interaction of PDC-109 with DMPC membranes is favored by a strong entropic contribution, whereas negative entropic contribution is primarily responsible for the rather weak interaction of this protein with DMPA and DMPG.  相似文献   

18.
PDC-109 is the major protein of bovine seminal plasma. It binds to the bovine sperm surface at ejaculation and modulates sperm capacitation. PDC-109 displays phosphorylcholine- and heparin-binding activities which are thought to account for its sperm surface coating and glycosaminoglycan-induced sperm capacitating activities, respectively. We have characterized the interaction of isolated PDC-109 with membranes of phospholipid vesicles using a biophysical approach. Our results show that PDC-109 interacts not only with the solvent-exposed phosphorylcholine head group but also with the hydrophobic core of liposomes. Binding of PDC-109 to membranes is a very rapid, biphasic process with half times of less than one second. Maximal binding of PDC-109 to small unilamellar vesicles was achieved with a stoichiometric ratio of 10–11 phosphatidylcholine molecules/PDC-109 molecule. Incorporation of phosphatidylethanolamine or phosphatidylserine into phosphatidylcholine vesicles reduced the binding of PDC-109, suggesting that both the density of phosphorylcholine groups and the surface charge determine the interaction of the seminal plasma protein with the surface of the membrane. Electron spin resonance measurements showed that binding of PDC-109 to phosphatidylcholine vesicles caused a rigidification of the membrane. The relevance of the data for describing the role of PDC-109 in the modulation of sperm capacitation is discussed. Received: 16 June 1997 / Accepted: 10 September 1997  相似文献   

19.
The structure of rhizopuspepsin (EC 3.4.23.6), the aspartic proteinase from Rhizopus chinensis, has been refined to a crystallographic R-factor of 0.143 at 1.8 A resolution. The positions of 2417 protein atoms have been determined with a root-mean-square (r.m.s.) error of 0.12 A. In the final model, the r.m.s. deviation from ideality for bond distances is 0.010 A, and for angle distances it is 0.034 A. During the course of the refinement, a calcium ion and 373 water molecules, of which 17 are internal, have been located. The active aspartate residues, Asp35 and Asp218, are involved in similar hydrogen-bonding interactions with neighboring residues and with several water molecules. One water molecule is located between the two carboxyl groups of the catalytic aspartate residues in a tightly hydrogen-bonded position. The refinement resulted in an unambiguous interpretation of the highly mobile "flap", a beta-hairpin loop region that projects over the binding pocket. Large solvent channels are formed when the molecules pack in the crystal, exposing the binding pocket and making it easily accessible. Intermolecular contacts involve mainly solvent molecules and a few protein atoms. The three-dimensional structure of rhizopuspepsin closely resembles other aspartic proteinase structures. A detailed comparison with the structure of penicillopepsin showed striking similarities as well as subtle differences in the active site geometry and molecular packing.  相似文献   

20.
The applicability of restrained molecular dynamics for the determination of three-dimensional protein structures on the basis of short interproton distances (less than 4 A) that can be realistically determined from nuclear magnetic resonance measurements in solution is assessed. The model system used is the 1.2 A resolution crystal structure of the 46 residue protein crambin, from which a set of 240 approximate distance restraints, divided into three ranges (2.5 +/- 0.5, 3.0+0.5(-1.0) and 4 +/- 1 A), is derived. This interproton distance set comprises 159 short-range ([i-j] less than or equal to 5) and 56 ([i-j] greater than 5) long-range inter-residue distances and 25 intra-residue distances. Restrained molecular dynamics are carried out using a number of different protocols starting from two initial structures: a completely extended beta-strand; and an extended structure with two alpha-helices in the same positions as in the crystal structure (residues 7 to 19, and 23 to 30) and all other residues in the form of extended beta-strands. The root-mean-square (r.m.s.) atomic differences between these two initial structures and the crystal structure are 43 A and 23 A, respectively. It is shown that, provided protocols are used that permit the secondary structure elements to form at least partially prior to folding into a tertiary structure, convergence to the correct final structure, both globally and locally, is achieved. The r.m.s. atomic differences between the converged restrained dynamics structures and the crystal structure range from 1.5 to 2.2 A for the backbone atoms and from 2.0 to 2.8 A for all atoms. The r.m.s. atomic difference between the X-ray structure and the structure obtained by first averaging the co-ordinates of the converged restrained dynamics structures is even smaller: 1.0 A for the backbone atoms and 1.6 A for all atoms. These results provide a measure with which to judge future experimental results on proteins whose crystal structures are unknown. In addition, from an examination of the dynamics trajectories, it is shown that the convergence pathways followed by the various simulations are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号